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ABSTRACT  

 

Many devices in electronics are in the form of multilayered structures. These structures 

can fail catastrophically if they contain defects or cracks. Enhancing their fracture properties is 

therefore critical to improve the reliability of the systems. The interface-dominated fracture 

mechanics of multilayered structure was studied using experiments and finite element (FE) 

modeling by considering two examples: thin films on polymer substrates in flexible electronics 

and Cu leadframe/epoxy molding compound (EMC) in micro-electronics packaging. 

 In the first example, aluminum-manganese (Al-Mn) thin films with Mn concentration up 

to 20.5 at.% were deposited on polyimide (PI) substrates. A variety of phases, including 

supersaturated fcc (5.2 at.% Mn), duplex fcc and amorphous (11.5 at.% Mn), and completely 

amorphous phase (20.5 at.% Mn) were obtained by adjusting alloying concentration in the film. 

In comparison with crystalline and dual phase counterparts, the amorphous thin film exhibits the 

highest fracture stress and fracture toughness, but limited elongation. Based on a fracture 

mechanism model, a multilayer scheme was adopted to optimize the ductility and the fracture 

properties of the amorphous film/PI system. Tensile deformation and subsequent fracture of 

strained Al-Mn films on PI were investigated experimentally and by FE simulations. It was 

found that by sandwiching the amorphous film (20.5 at.% Mn) between two ductile copper (Cu) 

layers, the elongation can be improved by more than ten times, and the interfacial fracture 

toughness by twenty four times with a limited sacrifice of the film's fracture toughness (less than 
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18%). This design provides important guidelines to obtain optimized mechanical properties of 

future flexible electronics devices. 

 The reliability of amorphous brittle Al-Mn (20.5 at.% Mn) thin films deposited on PI 

substrates is strongly influenced by the film/substrate interface adhesion. Some strategies to 

improve the adhesion of the interface were conducted, including roughening the surface of the PI 

substrate, adding a buffer layer and then tuning its thickness. Tensile testing and FE analysis of 

amorphous Al-Mn thin films with and without buffer layers coated on intact and plasma etched 

rough PI were investigated. It was found that by adding a chromium buffer layer of 75 nm on a 

rough PI substrate, the interface adhesion of the film/substrate can increase by almost twenty 

times. The obtained results would thus shed light on the interfacial engineering strategies for 

improving interface adhesion for flexible electronics. 

 In the second example, a systematic investigation and characterization of the interfacial 

fracture toughness of the bimaterial Cu leadframe/EMC was carried out. Experiments and FE 

simulations were used to investigate delamination and interfacial fracture toughness of the 

biomaterial system. Two dimensional simulations using computational fracture mechanics tools, 

such as virtual crack closure technique, virtual crack extension and J-integral proved to be 

computationally cheap and accurate to find the interfacial fracture toughness of the bimaterial 

structures. The effects of temperature, moisture diffusion and mode-mixity on the interfacial 

fracture toughness were investigated. Testing temperature and moisture exposure significantly 

reduce the interfacial fracture toughness, and its relationship with the mode-mixity was achieved 

by fitting the results with an analytic formula. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Background and Motivation 

 Fracture mechanics, as compared to traditional mechanics of solids approach, has gained 

great interest of mechanical designers and engineers because the failure can occur 

catastrophically when structures contain defects or cracks arising from manufacturing process or 

in service. In these cases, the consequences can be fatal. Many crack-related catastrophes were 

reported in automobiles, construction, ships, aeronautics, electronic devices, etc. Defects in 

electronics devices are inevitable because, together with production defects, most of the devices 

contain geometrical discontinuities, such as interfaces (i.e. a boundary between two dissimilar 

materials) and threaded connections, which are natural sources for crack initiation and 

propagation. While the study of microscopic and crystallographic defects of materials may 

inform about the origin of defect nucleation, fracture mechanics, on the other hand, is needed to 

elucidate the driving force of crack nucleation and propagation.  

 This dissertation focuses on studying the fracture mechanics of structures containing 

multiple layers of various materials. Layered structures are increasingly used in a wide variety of 

applications due to the ability to tailoring their specific properties through design and fabrication. 

While mechanical properties of bulk materials can be controlled through their micro-structures 

such as crystal structures, the mechanical properties of layered structures such as thin films on 

polymer substrates in flexible electronics or Cu leadframe/EMC in micro-electronics packaging 

are sensitive to interfaces. Fracture mechanisms of multilayered structures are different from the 
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bulk materials due to the geometrical constraint (e.g. interfaces) and mechanical properties 

mismatches. Therefore, the determination of the mechanical properties, such as critical strain, 

fracture strength, and interface fracture toughness of the systems is not just a straightforward 

extension of bulk counterparts. For example in thin films coated on substrates, together with the 

deformation caused by dislocation motion which is similar to bulk materials, the high ratio of 

surface to volume results in additional barriers for dislocation movement, which leads to higher 

strength of thin films compared to their bulk counterparts. One can find comprehensive reviews 

on this problem elsewhere (Evans et al. 1995; Hutchinson et al. 1991; Was et al. 1996). With the 

presence of interfaces, the fracture properties of multilayered structures can also be altered 

significantly. According to Was et al. (1996), plastic deformation has a strong effect on the 

fracture toughness of the interface in multilayered systems. A tough interface is normally 

attributed to extensive plastic work done at the crack tip during crack propagation. Therefore, 

materials with higher strength often exhibit higher fracture toughness. Nevertheless, the 

interfaces might affect the fracture toughness noticeably if the tensile strength of the material 

increases. For example, when the crack tip reaches the interface, the chance of the crack 

propagation strongly depends on how the stress at the crack tip is transferred to the other layer 

(Was et al. 1996). In addition, the interface may constrain the expansion of the plastic zone 

resulting in the increase in the stress at the crack tip. In another case, when the interface 

debonding (i.e. delamination) occurs, the stress at the crack tip is changed significantly resulting 

in the change in fracture resistance. Therefore, the reliability of such structures strongly depends 

on the interface adhesion. 

 As a specific example, interface-dominated fracture mechanics play significant role in the 

reliable performance of flexible electronic devices due to the large properties mismatch between 
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the metallic thin films and the flexible substrate underneath. Flexible electronics has gained great 

interest recently due to its potential applications such as wearable electronic devices (e.g. Fig. 

1.1(a)) (Wagner et al. 2004), sensor skins (e.g. Fig. 1.1(b)) (Lumelsky et al. 2001), electronic 

textiles or smart textiles (e.g. Fig. 1.1(c)) (Bonderover et al. 2004), and flexible solar cells (e.g. 

Fig. 1.1(d)) (Brabec 2004), etc. In flexible electronics devices, where there typically exists a 

form of metallic interconnect thin films coated on polymer substrates, ductility mismatch 

between the films and flexible substrates have often led to limited elongation and fracture 

resistance, and thus hindering reliable performance of the system. While the polymer substrate 

can sustain a large elongation, metallic thin films themselves often fail at very small 

deformation, normally a few percent of strain. The situation is even worse when the metallic film 

is amorphous/glassy (e.g. Al-Mn alloy studied here) because of its intrinsic brittle properties due 

to lack of strain hardening mechanisms or any intrinsic crack propagation barriers, e.g. grain 

boundaries or secondary phase boundaries. When elongated, the glassy film cannot sustain the 

required co-deformation with the flexible substrate. Ameliorating this situation is requested, 

because compared with crystalline metallic materials, amorphous alloys have been proven to be 

outstanding candidates as functional materials due to their good metallic bonding ability (Chu et 

al. 2009; Inoue 2001; Wang 2009), excellent mechanical, corrosion (Chu et al. 2010; Moffat et 

al. 1993; Mraied et al. 2016a), and magnetic properties (McHenry et al. 1999; Phan et al. 2008). 

Therefore, understanding the fracture behavior of such systems is very important to increase the 

performance and reliability of flexible electronic devices. Such considerations have motivated 

the author to improve the mechanical properties of amorphous metal films coated on polymer 

substrates, focusing on optimizing the fracture toughness, interfacial adhesion and elongation.   
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 Another example bearing similar consideration is the micro-electronic package systems, 

whose function is to provide a qualified surrounding environment for the electronics device. It 

includes powering, cooling down the device, as well as protecting the device from harmful 

environmental factors during service, such as heat, moisture, mechanical or chemical factors 

(Tummala 2001). Micro-electronic packages typically consist of multiple layers of materials with 

dissimilar physical properties. Stresses induced by mechanical and/or thermal loading can initiate 

and propagate interfacial debonding, especially near the free edges. Such interfacial delamination 

can lead to the multilayered micro-electronic package failure. For instance, Harries et al. (1999) 

studied interfacial delamination of very small peripheral packages by utilizing various methods 

to determine the ERR. Fan et al. (1999) performed numerical analysis of the delamination and 

cracking in the flip-chip modules, and proposed a criterion for predicting potential cracking sites. 

Hu et al. (1996) studied interfacial debonding of the multi-chip module thin film interconnects, 

and found that the debonding along the walls and polymer thin films can relieve thermal 

constraints, leading to a stress relaxation under thermal loading. Kamer et al. (2011) proposed a 

reliable, quantitative method for measuring adhesion of hard coatings on polymers. Among 

bimaterial systems used in micro-electronic packages, Cu leadframe and EMC (Fig. 1.2) is an 

important combination due to its widespread use. EMC is used to protect semiconductor chips 

from the external environment, such as physical forces, impact and pressure, chemical forces, 

moisture, heat, and ultraviolet rays, while electrically insulating the semiconductor devices 

(Komori et al. 2009). The importance of this system and its tendency to experience interfacial 

delamination has motivated the author to conduct a systematic investigation and characterization 

of interfacial fracture toughness of the bimaterial Cu leadframe/EMC system. 
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1.2 Organization of Dissertation 

 In this dissertation, the fracture behavior of multilayered structures was studied using 

experiments and computer simulations on two systems: brittle thin films (nanocrystalline and 

amorphous Al-Mn) coated on polymer substrate and Cu leadframe adhered to EMC. The 

chapters of the dissertation are organized as follows:  

a. Chapter 2 - Fundamentals of fracture mechanics and computational methods in fracture 

mechanics 

 This chapter introduces fundamentals of fracture mechanics including some main 

approaches to find fracture toughness of materials and the corresponding fracture criteria. The 

approaches cover linear elastic as well as elasto-plastic materials. In addition, some cutting edge 

computational methods in fracture mechanics will be presented. Based on finite element method 

(FEM), those methods are mainly used to find energy release rates (ERR) or J-integrals and their 

corresponding critical values (i.e. fracture toughnesses) of the multilayerd materials. 

b. Chapter 3 - Optimizing ductility and fracture properties of brittle metallic thin films on 

polymer substrates using multilayer schemes 

 Mechanical properties of Al-Mn alloys thin films (Al-5.2 at.% Mn, Al-11.5 at.% and Al-

20.5 at.% Mn) coated on polyimide (PI) substrates, including critical strain, fracture stress and 

fracture toughness, were measured. Based on a fracture mechanism model, a multilayer scheme 

was adopted to optimize the ductility and the fracture properties of the amorphous Al-Mn alloy 

film/PI system by adding Cu buffer layers. The film's microstructure and composition were 

characterized using scanning electron microscopy (SEM), energy dispersive spectra (EDS), 

transmission electron microscopy (TEM), and selected area diffraction (SAD). Tensile stress-

strain behavior (strain measured using digital image correlation (DIC) method) and fracture 
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properties of strained monolithic and multilayer films on PI were investigated experimentally 

and by finite element (FE) simulations. The most beneficial finding of this chapter is that by 

sandwiching the amorphous film (20.5 at.% Mn) between two ductile Cu layers, its ductility can 

be improved by more than ten times, and interfacial fracture toughness by twenty four times with 

a limited sacrifice of fracture toughness.  

c. Chapter 4 - Effects of substrate roughness and buffer layer properties on the interface adhesion 

of brittle thin films on PI substrates 

 In this chapter, strategies including roughening the substrate, adding a buffer layer (Al or 

Cr) and tuning its thickness were conducted to improve the adhesion of the interface of brittle 

Al-Mn thin films deposited on PI substrates. Tensile tests of the thin films with and without 

buffer layers coated on intact and plasma etched rough PI were conducted experimentally and by 

FE simulations. The most beneficial finding of this chapter is that by adding a Cr buffer layer of 

75 nm on a rough PI substrate of 100 nm Ra, the interface adhesion of the film/substrate can 

increase by almost twenty times. 

d. Chapter 5 - Temperature, moisture and mode-mixity effects on Cu leadframe/epoxy molding 

compound interfacial fracture toughness 

 This chapter characterizes the fracture toughness of the interface of Cu leadframe/EMC. 

The temperature dependence of the interfacial fracture toughness of the structure was 

investigated using four point bending delamination (4PB) tests. In addition, with the use of four 

point-bend end-notched flexure (4ENF) tests, the effects of moisture diffusion and mode-mixity 

on interfacial fracture toughness were also studied. Together with the experimental critical force, 

some methods of finding ERR, including analytical and computational methods, such as virtual 
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crack closure technique (VCCT), virtual crack extension (VCE) and J-integral were used to get 

the results.  
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1.3 Tables and Figures  

 
 

 

 

Figure 1.1 Flexible electronics applications. 

(a) Philips fluid smartphone. Credit: https://wordlesstech.com/philips-fluid-smartphone/, 

(b) Sensor skins to monitor a patient’s vital signs such as temperature and heart rate. Credit: 

http://www.dailymail.co.uk/sciencetech/article-2025102/Electronic-skin-How-hi-tech-tattoo-

monitor-patients-vital-signs.html, 

(c) Electronic textiles. Credit: http://www.ife.ee.ethz.ch/research/groups/PlasticElectronics/, 

(d) Flexible solar cells. Credit: https://www.cnet.com/news/solopower-rolls-out-flexible-rooftop-

solar-panels/. All the figures are in public domain. 
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Figure 1.1 (continued). 

 



www.manaraa.com

10 

 

 

Figure 1.2 Cu leadframe/EMC in an integrated circuit package. Adapted from 

https://en.wikipedia.org/wiki/Dual_in-line_package, which is in public domain. 
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CHAPTER 2: FUNDAMENTALS OF FRACTURE MECHANICS AND 

COMPUTATIONAL METHODS IN FRACTURE MECHANICS 

 

2.1 Introduction  

 Most of engineering components and structures contain geometry discontinuities, such as 

teeth roots of gear wheels, keyways in shafts and interfaces between dissimilar materials. The 

size and shape of the discontinuities are critical because they determine the fracture strength of 

the parts. Conventional treatment of structure failure often considers the interplay of two factors: 

applied stress and either yield strength or tensile strength of the material. However, this 

conventional approach gives erroneous results if the geometry discontinuity features have sharp 

radii. To explain this point, let’s consider the following cases in the Fig. 2.1 (Wang 1996). 

Assuming equal thickness of all samples, their fracture forces are arranged in the following 

order: F4 < F3 < F1 < F2. Clearly, the sizes of the defects in samples C and D are crucial to the 

fracture strength of the structures.      

 Fracture mechanics is the study of the initiation and propagation of cracks in materials. 

In comparison with the strength of material approach, fracture mechanics approach considers 

three factors, including applied stress, flow size and fracture toughness of the material. In this 

approach, the fracture toughness replaces yield strength (or tensile strength) as the relevant 

material property. Fracture mechanics quantifies the critical combinations of these three 

parameters (Anderson 2005). Fig. 2.2 shows the difference between fracture mechanics approach 

and strength of materials approach.  
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 Fracture mechanics can be divided into linear elastic fracture mechanics (LEFM) and 

elasto-plastic fracture mechanics (EPFM). LEFM gives excellent results for brittle elastic 

materials, such as amorphous metallic alloys, high-strength steel, glass and concrete. However, 

for ductile materials, such as low-carbon steel, some certain aluminium alloys, polymers, plastic 

deformation always precedes fracture and then EPFM is needed. Nonetheless, when the load is 

low enough, LEFM is still a good choice since it continues to provide an acceptable 

approximation to the physical problems. The family tree of fracture mechanics can be seen in 

Fig. 2.3 (Anderson 2005). Within fracture mechanics, there are two alternative (sub-) 

approaches: energy criterion approach and stress intensity approach, which will be considered 

in the next section. 

 This chapter does not intend to cover all aspects of fracture mechanics but focuses on 

some key parameters (i.e. fracture toughness and the equivalent terms), which are feasible to be 

obtained computationally and corresponding fracture criteria in the field, which are used to 

predict the crack initiation and propagation. These parameters are SIF K  (critical value of K  is 

fracture toughness of elastic materials), ERR G (critical value of G is an equivalent term for 

fracture toughness of elastic materials) and J-integral (critical value of J-integral is fracture 

toughness of elastic-plastic materials). Other key parameters used in fracture mechanics such as 

crack tip opening displacement (CTOD, used for elastic-plastic materials) and the crack tip 

opening angle (CTOA, used for elastic-plastic materials, but mostly applied in thin-walled 

structures in pipeline and aircraft engineering), can be found elsewhere (Anderson 2005; 

Cotterell 2002; Erdogan 2000; Horsley 2003; Newman Jr et al. 2003; Wells 1963; Zerbst et al. 

2009; Zhu et al. 2012).  
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2.2 Fracture Criteria 

2.2.1 Stress Intensity Approach 

a. Stress intensity factor 

 In fracture mechanics, stress intensity factor (SIF) K  is used to accurately determine the 

stress state (i.e. stress intensity) near the crack tip caused by external loads or residual stresses. 

For a linear elastic material, the stress field near a crack tip can be expressed as a product of 
r

1
 

and a function of   (where r is radial coordinate and   is angular coordinate) with a scaling 

factor K  (Anderson 2005): 
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where the superscripts and subscripts I, II, and III denote three different fracture modes (Mode I 

is opening or tensile mode, where the crack surfaces move directly apart. Mode II is sliding or 

in-plane shear mode in which the crack surfaces slide to each other perpendicular to the crack 

edge. Mode III is out-of-plane shear mode, or tearing mode, where the crack surfaces move 

relative to one another and parallel to the leading edge of the crack). For linear elastic materials, 

the principle of superposition applies. A mixed-mode problem can be obtained by summarizing 

each mode (Anderson 2005):  

)()()()( III

ij

II

ij
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ij
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ij   .     (2.4) 

http://en.wikipedia.org/wiki/Stress_%28physics%29
http://en.wikipedia.org/w/index.php?title=Tensile_mode&action=edit&redlink=1
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Therefore, the stress distribution at the crack tip will be obtained if the constants iK  are known. 

The SIFs iK  (
IK ,

IIK ,
IIIK ) include the external loads (

ij ) and the geometries, i.e. the crack's 

size and the shape ( )(ijf ).  

 In practice, maximum stress at the crack tip will be calculated and engineers' duty is to 

ensure that it does not exceed the fracture toughness of the materials. For that purpose, SIF K is 

expressed in terms of stresses  at 0r and 0 . For example, for a through crack appearing 

in an infinite plate under uniform tensile stress  , the SIF K is presented and shown in the Fig. 

2.4, where a is one half of the width of the through crack. The unit of K  is:  

  LengthStressL
L

F
KDim .

2
 .    (2.5) 

For some simple configurations, closed-form analytical formulas of the SIF K  were derived and 

can be found in fracture mechanics textbooks.  

b. KC as fracture toughness of materials and the first fracture criterion 

 In theory, the stress at the crack tip is singular (i.e. infinity) but in practice there is always 

a plastic zone around the crack tip that impedes the stress to reach the infinite value. It is very 

difficult to determine the actual stress state in the plastic zone around the crack tip and compare 

it to the allowable strength of the material to determine whether a crack initiates (and propagates) 

or not. Having done a series of experiments, one can determine the critical SIF CK  for each 

material. CK  is a material property, i.e. the material’s resistance to fracture, and is called fracture 

toughness of the material which is used to determine the crack stability. Fracture occurs when 

iK  ≥ CiK  (i = I, II, III) and at the moment of fracture: iK  = CiK (Anderson 2005). 
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2.2.2 Energy Criterion Approach 

a. Energy balance during a crack growth  

 The difference between a cracked body and an un-cracked body is obviously the 

additional surface associated with the crack. It is well known that creating new surfaces (crack) 

consumes energies since surfaces carry higher energy than the body. It then follows that whether 

or not a cracked body remains stable or becomes unstable depends on whether it contains 

sufficient energy to create additional surfaces while still maintaining its equilibrium (Anderson 

2005). According to the law of conservation of energy the work performed per unit time by the 

applied loads (W ) must be equal to the rates of change of the internal elastic energy ( EU ), 

plastic energy ( PU ), kinetic energy ( K ) of the body, and the energy required to increase the 

crack length per unit time ( ). In other words (Wang 1996): 

W  = EU  + PU  + K  +  .    (2.6) 

If the crack grows slowly, the kinetic energy K  is negligible ( K  = 0). Moreover, because all 

changes with respect to time are caused by changes in crack size: 

A
A

t

A

At 















  ,     (2.7) 

where A  presents the crack area. Therefore equation (2.6) can be rewritten as: 

AA

U

A

P














 ,     (2.8) 

where WU E  is the potential energy of the system. The equation (2.8) means that the 

reduction in potential energy equals to the energy dissipated in plastic energy and surfaces 

creation (Wang 1996). 
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b. Griffith's theory 

 For an ideally brittle material (linear elastic material), the energy dissipated in plastic 

deformation is negligible and it can be ignored ( PU  = 0). Therefore, for linear elastic materials, a 

crack extension force per unit of crack area G  can be defined from equation (2.8) (Anderson 

2005): 

 
AA

G








 .     (2.9) 

The equilibrium equation (2.9) means that potential energy must be sufficient in the body to 

overcome the surface energy of the material (energy required to increase the crack). G  is also 

called elastic energy release rate or energy release rate (ERR) or strain energy release rate.  

 According to linear elasticity theory, a body under constant applied loads obeys 

Clapeyron’s theorem (Fosdick et al. 2003): 

W = 2UE     (2.10) 

 and associated with (2.6) (and K  = 0), hence, the equation (2.9) can be rewritten as: 

A

U
G E




 .     (2.11) 

The physical meaning of the ERR G  is that it characterizes the amount of energy per unit area 

that would be released if the crack advances. It should be pointed out that the equation is correct 

only when the cracked body behaves linearly. If the body behaves nonlinear elastic or 

considerable plasticity, the equation is no longer valid and hence the original equation (2.8) 

should be used instead. 

c. GC - critical energy release rate of materials and the second fracture criterion 

 The energy approach states that crack extension (fracture) occurs when the energy 

available for crack growth is greater than the resistance of the material. In other words, a fracture 
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occurs when G  ≥ CG  - the critical ERR which is a measure of fracture toughness of the 

material. Therefore, CG  is also a material property - the material’s resistance to fracture. At the 

moment of fracture: G = CG . 

2.2.3 J-integral - a Nonlinear Approach 

a. J-integral  

 

 The above two methods of finding the ERR are for elastic materials only. For nonlinear 

elastic and elasto-plastic materials, another approach is needed to analyse the facture. J-integral 

was first introduced by (Rice 1988), due to the difficulties involved in computing the stresses 

close to the crack in nonlinear elastic or elastic-plastic materials. It was shown by (Anderson 

2005) that if a monotonic loading is assumed (without any plastic unloading), the J-integral is a 

path-independent line integral and it represents the strain ERR of nonlinear elastic and elasto-

plastic materials: 

dA

d
J


 ,     (2.12) 

where WU E   is the potential energy, the elastic strain energy EU  stored in the body minus 

the work W  done by external forces and A  is the crack area. In practice, J-integral is defined as 

(Anderson 2005): 

ds
x

u
TwdyJ i

i



   ,    (2.13) 

where 
ij

ijij dw



0

 is the strain energy density, jiji nT   is the traction vector, Г is an 

arbitrary contour around the tip of the crack as shown in the Fig. 2.6, n  is the unit vector normal 

to Г, and , , u  are the stress, strain and displacement field, respectively. The dimension of J  

is:  
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 
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F
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2
.    (2.14) 

b. JC as fracture toughness of materials and the third fracture criterion 

 

 The same as the above mentioned two criteria, the crack propagates when J  ≥ CJ  - 

critical J-integral or elasto-plastic failure parameter. Critical J-integral is called elasto-plastic 

fracture toughness. At the moment of fracture: J  = CJ . 

2.2.4 Relationship Between K, G and J-integral 

 For linear elastic materials, J-integral is, in fact, the strain ERRG , and both are related to 

the SIF K  in the following fashion (Anderson 2005):  
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(1) is for the case of Plane stress and (2) is for Plane strain. The same relationship obviously 

holds for CK  and
CG . Therefore, the three approaches are equivalent for isotropic linear elastic 

materials. 

2.2.5 Mode-Mixity of an Interface Delamination  

 Interfacial delamination is of an important concern for multilayered electronics devices, 

as it is one of the most common failures observed after reliability tests. Fracture mechanics has, 

quite reasonably, been developed for simple fractures in homogeneous, isotropic materials. For 

inhomogeneous, anisotropic materials such as bilayered materials an extra characterisation is 

required.  

 It is believed that Williams (1959) first conducted the theoretical investigation of 

interfacial crack problems by using the asymptotic analysis for an interfacial crack between two 

isotropic elastic materials. Opposite to homogeneous, isotropic materials where cracks tend to 
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propagate in pure mode I locally at the crack tip, mode-mixity   (Fig. 2.7) is a critical parameter 

for interfacial fracture. The mode-mixity (also called the phase angle of fracture or loading 

phase angle) is the relative proportion of tractions ahead of the crack tip in mode II and mode I 

in the facture (  = 0 leads to mode I loading,   = 2/  leads to mode II loading). A crack 

constrained in an interface is subjected to mixed mode conditions and propagates when the 

preferred fracture path is in the interface. It is shown that interfacial fracture toughness depends 

strongly on the mode-mixity (Evans et al. 1990; Wang et al. 1990). In general, the total fracture 

toughness increases as the mode II contribution increases. The delamination propagates when, 

for a given mode-mixity, the calculated ERR G exceeds the interlaminar fracture toughness GC 

(critical strain ERR). 

 Mode-mixity can be determined using a SIF-based approach or can be based on the 

components of the ERRs, which is used in this work. The mode-mixity based on ERRs, G  for a 

crack in homogeneous isotropic materials is calculated by the components of the ERR with 

respect to mode I and mode II as in the formula (Agrawal et al. 2006):  

I

II
G

G

G
2tan .    (2.16) 

For an interface crack, the decomposed components of the ERR, hence the mode-mixity, G , 

depend on the crack extension size, ∆. However, when ε, which is a bimaterial constant defined 

in (Agrawal et al. 2006), is small, the oscillatory character can be ignored. 

2.3 Computational Methods in Fracture Mechanics   

 Although analytical expressions for the total ERR are available for some simple 

interfacial crack problems (Cherepanov 1979; Hutchinson et al. 1991), they involve considerable 

mathematical complexity. For complicated geometries or loading conditions, the analytical 
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expressions may not be available; hence the problem needs to be solved numerically. Moreover, 

computational solutions can save time and money spent on experiments. Thus, in practice, 

computational methods are preferred in many cases.  

 The total ERR can be obtained through numerical computation using FE based 

techniques, such as VCCT, VCE, J-integral, etc. However, only VCCT provides information 

about the mode-mixity (i.e. it can give the components of the ERR).  

2.3.1 Virtual Crack Closure Technique    

 VCCT for ERR calculation was originally proposed in 1977 by Rybicki and Kanninen, 

based on Irwin’s crack closure integral (Irwin 1957). Although the VCCT has significant 

advantages over other methods, it has not been developed in most of the large general-purpose 

FE codes (e.g. Ansys APDL). Let’s examine a two-dimensional sample.  

a. Crack closure method - two analysis steps  

 Before going to the investigation of the VCCT, it is appropriated to investigate a method 

called crack closure method or two-step virtual crack closure technique. According to Krueger 

(2004), the method is based on the assumption that the energy -  released when the crack is 

extended (or the work   required to increase the crack as shown in the formula (2.9)) by a  

from a (Fig. 2.8) to a  + a  (Fig. 2.9) is identical to the energy required to close the crack 

between location l and i. Index “1” denotes the first step depicted in Fig. 2.8 and index “2” the 

second step as shown in Fig. 2.9. For a crack modelled with two-dimensional four noded 

elements, the work -  required to close the crack along one element side can be calculated as 

(Krueger 2004): 

 llll wZuX 2121 ..
2

1
 ,    (2.17) 
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noted that - = . Here, X1 and Z1 are the shear and opening forces, respectively, measured 

at the nodal point l to close the crack (Fig. 2.8) and u2l and w2l are the shear and opening 

displacements at node l (Fig. 2.9). The crack closure method creates the original state before the 

crack extension. Hence, the forces needed to close the crack surfaces are identical to the ones 

acting on the surfaces of the closed crack. The forces X1l and Z1l are determined from the first 

FEA in which the crack is closed. The relative displacements u2 and w2 are determined from the 

second FEA in which the crack reaches the length of a  + a . 

b. Virtual crack closure technique - a one step modified crack closure method  

 VCCT is a modification of the crack closure method. In VCCT, the crack extension of 

a  from a + a  (node i) to a + 2 a  (node k) is assumed not make any remarkable change to the 

state of the crack tip (Fig. 2.10). Therefore, the displacements behind the crack tip at node i are 

approximately equal to the displacements behind the original crack tip at node l. Moreover, 

during the crack extension from a + a  to a + 2 a , the energy -  released is exactly the same 

to the energy required to close the crack. That is between the nodes i and k. If the crack was 

simulated by two-dimensional, four-noded elements (Fig. 2.10), the work -  needed to close 

the crack (along one element side), will be determined (Krueger 2004): 

 lili wZuX  ..
2

1
,     (2.18) 

noted that - = . Here Xi and Zi are the shear and opening forces, respectively, measured at 

node i, and lu  and lw  are the shear and opening displacements measured at node l. Hence, 

forces and displacements needed to determine the -  released during the crack extension will 

be obtained from a single FEA. From equation (2.9):
AA
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components of the ERR 
IG  and 

IIG  are determined for four-noded elements as shown in Fig. 

2.11 (Krueger 2004): 
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 ,    (2.19a) 
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where a is the element length at the crack front and Xi and Zi  are the measured forces at node i. 

The displacements behind the crack front are determined at the upper crack face ul and wl (node 

l) and the displacements ul* and wl* are determined at the lower crack face (node l*). The crack 

surface A  is determined as 1.aA  , in which the two-dimensional model is assumed to have 

the unit thickness. The mode I and mode II components of the strain ERR, IG  and IIG  are 

calculated for eight-noded elements as shown in Fig. 2.12 (Krueger 2004): 
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  ,   (2.20b) 

where a is the element length at the crack front. Moreover, the forces Xi and Zi at the crack tip 

(node i) and the forces Xj and Zj at the mid-side node of the crack (node j) are needed. The 

sliding and opening displacements behind the crack tip are determined at nodes l and l* from the 

upper crack face ul and wl and the lower crack face ul* and wl*. Additionally, the displacements at 

nodes l and l* and at nodes m and m* are needed. They are determined from displacements at the 

upper crack face um and wm and at the lower crack face um* and wm*. The total ERR TG  is then 

obtained from its mode I, II, III components as: 
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IIIIIIT GGGG  ,     (2.21) 

where 
IIIG  = 0 for the two-dimensional case. 

 In comparison with other FEM-based methods, VCCT has many advantages. First, G can 

be easily computed by VCCT in conjunction with the FE analysis, since VCCT did not make any 

assumptions for the form of the stresses and displacements. Therefore, singularity elements are 

not required at the crack tip. Second, the physical meaning of VCCT is clear: energy to create 

new surfaces. It combines both force and displacement opening. Third, in contrast to VCE, in 

VCCT, the second analysis is not required. This leads to a faster calculation. Fourth, the mode-

mixity of the fracture can be obtained by VCCT, since it gives individual mode components of 

ERR. Last, VCCT does not require a special mesh arrangement around the crack front. It is not 

mesh sensitive, and even a coarse mesh can work. However, the major limitation of the VCCT is 

that it can only be applied to linear elastic fracture. 

2.3.2 Virtual Crack Extension Method  

 In the VCE method, which was implemented in Ansys, two analyses are performed, one 

with the crack length a, and the other with the crack length a +Δa. If the potential (strain) energy 

  for both cases is stored, the ERR can be calculated from (Ansys 2016): 

  aBA
G aaa









 

,    (2.22) 

where B is the thickness of the fracture model. 
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2.3.3 Stress Intensity Factor Approach  

 The calculation procedure of K in commercial FE codes, such as Ansys, is depicted in 

(Ansys 2016). For a crack loaded in mode I, the displacement of the investigated point in the y-

direction (perpendicular to the crack plane) is given by (Ansys 2016): 
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with v43  for plain strain and 
v

v






1

3
 for plain stress and 

)1(2 v

E


 is the shear 

modulus, r and θ are the point's polar coordinates. This expression also follows from 

Westergaard’s solution to the differential equation based on the Airy’s stress function. The 

higher order terms are neglected in this solution. This means that it is only valid near the crack 

tip. Evaluating the equation for the displacement yu  at   = ±180° gives the displacement at the 

crack faces (Ansys 2016): 
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Therefore: 
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


1
2  ,    (2.25) 

where yu is the motion of one crack face with respect to the other one. The crack intensity 

factors in the other modes can be determined in the same way using the displacements ux and uz.  

 Using this method, the intensity factors are determined in Ansys APDL by the KCALC 

command. Having K, G is then calculated by the formula (Krueger 2004): 
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which expresses the relationship between G and K to calculate G. 

 In Ansys, the POST1-command KCALC is used to determine stress-intensity factors at 

different fracture modes KI, KII, and KIII. Note that KCALC is limited for linear elastic problems 

with homogeneous, isotropic materials. To use KCALC, follow these steps within the POST1 

postprocessor (Ansys 2016): 

 + Define a crack-front coordinate system: x-axis has to be set to be parallel to the crack 

face (i.e. perpendicular to the crack front if the model is three dimensional) and y-axis 

perpendicular to the crack face. This coordinate system has to be the active coordinate system 

(CSYS) or result coordinate system (RSYS) when KCALC executes. 

 + Define a path along the crack face starting from crack-tip node: for a half-crack 

configuration (Fig. 2.13(a)), two more nodes are needed along the crack face; for a full-crack 

configuration (Fig. 2.13(b)) in which both adjacent crack faces are involved, four more nodes are 

needed. 

 + Calculate KI, KII, and KIII: KCALC command is used to calculate the SIFs.  

2.3.4 J-integral Method     

 As mentioned in section 2.2.3, for a nonlinear elastic body containing a crack, the J-

integral is defined as (Anderson 2005):  

ds
x

u
TwdyJ i

i



  , 

where 
ij

ijij dw



0

 is the strain energy density, jiji nT   is the traction vector, Г is an arbitrary 

contour around the tip of the crack, n  is the unit vector normal to Г, and , , u  are the stress, 
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strain and displacement field, respectively. The strain energy density w can preferably be defined 

per element. That means that it is possible to divide the strain energy for each element. Creating 

a path around the crack tip, mapping the strain energy density to this path and integrate over the 

path length with respect to y, gives the first term  wdy . Defining a normal vector to the path Г 

and using the stresses x , y and xy  makes it possible to get the traction vector jiji nT   

working on the path. The derivatives 
x

u i




are defined by mapping the displacements to the path, 

then moving the path by a distance in the x-direction in the local crack tip coordinate system. 

Knowing the distance x  the path is moved and makes it possible to approximate the derivates. 

With the traction vector and the derivates of the known displacements the second term in the 

equation  


ds

x

u
T i

i can be calculated. 

 Using this principle, J-integral has been implemented in Ansys in which the J-integral is 

calculated at the solution phase of the analysis after a sub-step has converged. Ansys then stores 

the value in the result file. J-integral is performed in four steps (Ansys 2016): 

 + Initiate a new J-integral calculation: to start a J-integral calculation, use the CINT 

command's NEW option and provide a number to identify the input information for the J-integral 

calculation. 

 + Define crack information: the crack tip node component and the crack extension 

direction are both necessary for a J-integral calculation. Two methods using the CINT command 

are available for specifying the values. First, one defines the crack tip node component and the 

crack plane normal. This approach applies for both 2-D crack geometry and 3-D flat crack 

surfaces. It offers a simple way to define a 3-D J-integral calculation in which only the definition 

of the crack tip (front) node component and the normal of the crack plane are needed. Use this 
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method when the crack plane is flat. In the second method, one defines the crack extension node 

component and crack extension direction. This approach applies for 3-D curve crack planes, 

where a unique normal may not exist. However, the crack extension node component and the 

crack extension direction at each crack tip node location must be defined. This method is used 

when the crack plane is not flat, or when a set of nodes form the crack tip, as in the case of a 

collapsed crack tip mesh. 

 + Specify the number of contours to calculate: this step specifies the number of contours 

for the J-integral evaluation. This step helps users get the convergence value of the J-integral. 

 + Define a crack symmetry condition: if the crack is located along a symmetry plane, and 

only a half model is created, define a symmetric condition so that Ansys can account for it.  

 In comparison with other fracture mechanics computational methods, the biggest 

advantage of J-integral is that it can be used for linear elastic as well as nonlinear elastic and 

elastic-plastic materials. The major limitation of the J-integral method is that it is impossible to 

get the mode-mixity of the fracture.  

2.3.5 Cohesive Zone Model 

 The cohesion zone model (CZM) which was critically reviewed in reference (Park et al. 

2013) is one of the most modern evolutions in fracture mechanics. It is well known that the 

traditional mentioned fracture mechanics approaches cannot predict the crack nucleation. When 

the nonlinear plastic zone size around the crack tip becomes comparable to or larger than the 

characteristic size, the assumption of small plastic zone size is no longer valid. Therefore, 

another approach is required. CZM, on the other hand, can investigate both nucleation and 

growth of interfacial delamination without the assumption of small plastic zone size. Moreover, 

while in all other methods, even for brittle materials the presence of a pre-crack is needed, it is 
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not necessary to introduce a pre-crack in CZM (Camanho et al. 2004; Tvergaard et al. 1992; van 

Hal et al. 2007). So far, CZM has been successfully applied to investigate the fracture at 

dissimilar material interfaces (Tvergaard et al. 1993; Xu et al. 1994) or to study the composite 

delamination (Alfano et al. 2001). 

 CZM is a phenomenological rather than physical model of fracture process inside 

materials or along interfaces. CZM was originally proposed by (Dugdale 1960) where the plastic 

deformation area is assumed to be a narrow strip ahead of the crack tip involving the extent of 

plastic yielding and applied loading. Based on the atomic nature of the fracture nucleation and 

propagation, this narrow plastic strip was then modeled to be a cohesive zone where the stress 

ahead of the crack tip (in the strip) is a function of surfaces separation rather than a constant 

yielding strength (Barenblatt 1962). Instead of taking into account the crack tip singularity (in 

LEFM), CZM regards the fracture process as a gradual phenomenon where the surfaces 

separation occurs at the cohesive zone (i.e. crack tip and the involved surfaces) being impeded 

by cohesive forces (Fig. 2.14).   

 In CZM, the fracture process is modeled as progressive decay of interface strength. The 

stress state between the potent crack surfaces governed by a cohesive law or also called a 

traction-separation law. In other words, a cohesive law describes the debonding of two surfaces 

mathematically. The cohesive traction works as the resistance to crack nucleation and 

propagation. It is usually presented as a τ-δ curve, in which τ is the stress to separate the adjacent 

surfaces or can be understood as the stress on the surfaces and δ is the relative separation 

between them (Trias 2012). Under external loading, the traction increases with separation and 

then decreases after it reaches a critical separation δc. At this point, the traction is at maximum 

value τm, the crack initiates or, in other words, the material starts the damage process. The actual 
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crack tip is defined or, in other words, the material is totally damaged where the cohesive 

traction reaches zero (Fig. 2.15) (Haodan 2010; Trias 2012). If the material/structure is loaded at 

τ < τm then the unloading goes back to zero in the same path because the material/structure is not 

damaged. In another situation, if the material/structure is loaded at τ > τm then it begins to 

damage then the unloading goes back to zero as a secant (Fig. 2.15) (Trias 2012). The area under 

the curve is defined as fracture toughness of the material or interfacial fracture toughness of the 

interface (Fors 2010). Therefore, besides the material properties of the constitution bulk 

materials, the cohesive traction-separation law governs the behavior of crack extension without 

any additional conditions. Several traction-separation laws have been proposed to represent non-

linear fracture behavior. There are generally required characteristics for the laws summarized as 

follows (Park et al. 2013): 

 + The traction separation relationship is independent of any rigid body motion. 

 + The work to create a new surface is finite, and its value corresponds to the fracture 

energy, i.e., area under the traction-separation curve. 

 + A finite characteristic length scale exists, which leads to a complete failure condition, 

i.e., no load-bearing capacity. 

 + The cohesive traction across the fracture surface generally decreases to zero while the 

separation increases under the softening condition, which results in the negative stiffness. 

 + A potential for the cohesive constitutive relationship may exist, and thus the energy 

dissipation associated with unloading/reloading is independent of a potential. 

 Based on the required characteristics, the effective traction (normalized by the cohesive 

strength (rmax)) and displacement representing the cohesive relations were proposed in terms of 

cubic polynomial (Tvergaard 1990), trapezoidal (Tvergaard et al. 1993), smoothed trapezoidal 
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(Scheider et al. 2003), exponential (Ortiz et al. 1999), linear softening (Camacho et al. 1996; 

Espinosa et al. 2003) and bilinear softening (Wittmann et al. 1988) relationships. However, it is 

worthy to note that the influence of the curve shape is of lesser importance than the critical 

traction and separation (Fors 2010). 

 In practice, to determine the cohesive law of a material or an interface, based on 

experiments and simulations there are two main approaches: iterative and direct. For iterative 

approach, various traction-separation relations are imposed in FEA simulations and the one that 

fits the experimental data the best is selected (Cox et al. 1991; Li et al. 2005a; Mello et al. 2004). 

Some works done by this approach can be found elsewhere (Cox et al. 1991; Li et al. 2005a; 

Mello et al. 2004). With the direct approach, the cohesive law is obtained from experiments, 

such as tensile tests or double cantilever beam tests (Pandya et al. 2000a; Pandya et al. 2000b).  

Another direct approach involves J-integral calculations from which the traction-separation 

relation is determined. In this method, J-integral values and the separation of the surfaces 

adjacent to the crack tip are recorded simultaneously, based on which the traction-separation 

relation is obtained. Some studies conducted by this approach can be found in references 

(Sørensen 2002; Sørensen et al. 2003; Zhu et al. 2009). 

 There are only two cohesive laws available in Ansys APDL: bi-linear and exponential. 

Bi-linear law is used for contact elements and exponential law is for interface elements (Ansys 

2016). In bi-linear approach, two cohesive parameters are needed, including maximum traction 

and maximum separation (CBDD option) or maximum traction and critical ERR (CBDE option). 

In exponential approach, three cohesive parameters are needed, including maximum stress, 

normal displacement at maximum stress and tangential displacement at maximum stress.  
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2.4 Tables and Figures 

 

Figure 2.1 (A) (B) un-cracked and (C) (D) cracked plates with different sample and crack 

geometry. 

 

 

a. Strength of materials approach 

 

b. Fracture mechanics approach 

Figure 2.2 Comparison of the fracture mechanics approach to the strength of materials approach. 

(a) strength of materials approach and (b) fracture mechanics approach. 
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Figure 2.3 Simplified family tree of fracture mechanics. 

 

 

 aK I   

Figure 2.4 Crack in an infinite plate under uniform tension. Credit wikipedia.com, which is in 

public domain. 
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Figure 2.5 Difference between nonlinear elastic material and elastic plastic material. 

 

Figure 2.6 J-integral. Credit (Ansys 2016), which is in public domain. 

 

Figure 2.7 Geometry of a bi-material specimen with an interface crack. 
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Figure 2.8 First step - Crack closed. Credit (Krueger 2004). 

 

 

Figure 2.9 Second step - Crack extended. Credit (Krueger 2004). 
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Figure 2.10 VCCT (or 1 step – VCCT). Credit (Krueger 2004). 

 

 

Figure 2.11 VCCT for four-noded elements. Credit (Krueger 2004). 
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Figure 2.12 VCCT for eight-noded elements. Credit (Krueger 2004). 

 

 

Figure 2.13 Half-crack and full-crack models. Credit (Ansys 2016), which is in public domain. 
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Figure 2.14 Cohesive zone model. Credit (Park et al. 2013).  

 

Figure 2.15 Cohesive law. Credit (Trias 2012), which is in public domain. 
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CHAPTER 3: OPTIMIZING DUCTILITY AND FRACTURE PROPERTIES OF 

BRITTLE METALLIC THIN FILMS ON POLYIMIDE SUBSTRATES USING 

MULTILAYER SCHEMES 

 

3.1 Introduction 

 Ductility mismatch between the metallic interconnect thin films and the flexible polymer 

substrate has often led to limited stretchability and thus hindering reliable performance of the 

whole flexible electronics system. Various strategies have been adopted to improve the 

stretchability of the metal film coated on polymer, mostly focusing on crystalline thin films, such 

as Cu and Cr (Kim et al. 2005a; Kim et al. 2005b; Lin et al. 2008; Park et al. 2000; Xu et al. 

2011). Metallic film's rupture strain has been found to be highly sensitive to film adhesion to the 

substrate. Improved film/substrate adhesion delays interfacial debonding and retards strain 

localization, such as necking or shear band formation in the film (George et al. 2005; Xiang et al. 

2005). Annealing at relatively low temperatures also improves the strechability and fracture 

toughness of crystalline thin films by grain growth and other related phenomena (Lu et al. 2009).  

 As mentioned in chapter 1, compared to crystalline counterparts, various amorphous 

alloys stand out to be good candidates as functional materials due to their good metallic bonding 

ability (Chu et al. 2009; Inoue 2001; Wang 2009), excellent mechanical, corrosion (Chu et al. 

2010; Moffat et al. 1993), and magnetic properties (McHenry et al. 1999; Phan et al. 2008). 

Nevertheless, most amorphous alloys are quasi-brittle due to the lack of strain hardening 

mechanisms or any intrinsic crack propagation barriers, such as grain boundaries or secondary 
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phase boundaries. Therefore, their limited ductility and low fracture toughness often lead to high 

sensitivity to structural variables, such as surface roughness, making them unreliable for the 

widespread use (Schuh et al. 2007). One solution for this issue is adding crystalline metal 

layer(s) to create a hierarchical multilayered structure (Misra et al. 2005; Wang et al. 2005; 

Zhang et al. 2014). The ductile crystalline layer will mitigate the catastrophic shear bands 

propagation of the amorphous layers and localize crack propagation. Despite current progress, 

there have been very limited attempts to characterize the fracture behavior of amorphous alloys, 

especially under tensile loading conditions.  

 In this chapter, Cu was chosen as the crystalline buffer layer to the amorphous film due to 

its relatively high elongation and tensile strength. It was proposed that if the strength of the well-

adhered crystalline layer is similar or higher than that of the amorphous counterpart, the 

amorphous layer will be constrained by the crystalline one, making the whole multilayered film 

fail at a larger strain (Chen et al. 2011b; Li et al. 2007b; Nieh et al. 1999). In this chapter, 

crystallinity of the Al thin films was tuned by varying Mn concentration in the alloy (Ruan et al. 

2009). Increasing Mn% from 5.2 at.% to 20.5 at.% leads to a phase transformation from 

supersaturated fcc phase with moderate ductility to brittle amorphous phase. Thin film 

microstructure and composition were characterized using SEM, EDS, TEM and SAD. Tensile 

tests of metal coated PI were performed and the strains were measured using DIC method. It was 

found that the amorphous Al-20.5 at.% Mn exhibits the highest fracture stress and fracture 

toughness, but lowest ductility. Further improvement of fracture toughness, interfacial fracture 

toughness and elongation of the amorphous alloy/PI system was achieved by adopting bilayered 

and trilayered structures using ultrathin Cu buffer layers. Finally, the failure mechanisms of the 

layered films were modeled using finite element analysis (FEA). 



www.manaraa.com

40 

 

3.2 Experimental Procedure  

3.2.1 Sample Preparation 

 Al-Mn thin films were magnetron sputtered on 7.6 µm thick PI foils (Kapton HN by 

DuPont). Prior to film deposition, the PI substrates were ultrasonically cleaned with acetone and 

ethanol. All depositions were performed using the CRC-100 sputtering system with 70 W RF 

power at a base pressure of 1x10
-6

 Torr. The nominal target-substrate distance was 60 mm and 

the deposition rate was about 0.11 nm/s. Six sets of samples were prepared, as listed in Table 3.1. 

The total thickness of metallic films on all samples was kept at about 1.2 µm to minimize the 

film thickness effect on fracture strain (Cordill et al. 2010). Samples M5 (Al-5.2 at.% Mn), M11 

(Al-11.5 at.% Mn) and M20 (Al-20.5 at.% Mn) are 1.2 µm thick monolithic films on PI substrate 

(Fig. 3.1). Samples B1 and B2 are bilayered films with 50 nm and 100 nm Cu buffer layer 

between the PI substrate and the Al-Mn film, respectively, with the total film thickness (i.e. 

thickness of both the Cu and Al-Mn layer) of 1.2 µm (Fig. 3.2). Sample S is a trilayered structure 

on the PI substrate, with two Cu layers (100 nm) sandwiching the Al-20.5 at.% Mn layer (1 µm) 

(Fig. 3.3). After film deposition, coated PI exhibits negligible curvature change, thus the residual 

stress in the film is neglected in this study. This is consistent with extensive previous reports 

showing that the highly compressive residual stress in thin films increases (or the absolute value 

decreases) rapidly with increasing film thickness and becomes close to zero at layer thicknesses 

greater than 500 nm (Frank et al. 2011).   

 Surface morphology and chemical composition of as-deposited samples were 

characterized using TEM (Hitachi SU-70) and EDS (EDAX-Phoenix). TEM samples were 

prepared by directly sputtering Al-Mn alloys on continuous carbon film grids for 15 min to reach 
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a sample thickness of ~150 nm. Bright-field, dark-field imaging, and SAD analysis were 

performed using Tecani F20 TEM operated at 200 kV with a field emission gun. 

3.2.2 Tensile Testing  

 Uniaxial tensile tests (DTS, National Instruments) were carried out at a constant strain 

rate of 4x10
-4

 s
-1

 at room temperature. Rectangular samples with 4×20 mm
2
 gauge area were 

used. All results reported were obtained by averaging from at least four separate tests. Electrical 

resistance of the samples was recorded using Tektronix 4050 multimeter during the test. The 

critical strain εc, i.e. the macroscopic strain, which characterizes the micro-crack formation (as 

opposed to rupture), was obtained by using electrical resistance change method (Lu et al. 2007; 

Niu et al. 2007). Fig. 3.4 shows a typical evolution of electrical resistance change during a tensile 

test, where εc is defined at the point where the electrical resistance deviated from the ideal curve 

(Niu et al. 2007). The force of the film (     ) at a certain displacement was estimated as 

                        (Macionczyk et al. 1999; Pei et al. 2011) (neglecting the force 

required to break the native oxide layer on the metallic film), where Ftotal and Fsubstrate are the 

tensile loads of the thin film-coated and uncoated PI specimen at the same displacement, 

respectively. The tensile stress of the film was then calculated as           , where w and t 

are the width and the thickness of the film, respectively. Strain was measured during tensile tests 

using DIC method by tracking the makers (all samples were sprayed with fine ink speckles on 

the surface prior to the tensile testing). The movements of these markers were then tracked with 

the high definition camera (1920 × 1080 pixels, 30 fps) (Bing et al. 2009). The strain was then 

calculated from the recorded images using a Matlab routine developed by Christoph Eberl et al. 

(Eberl 2010). Based on the stress and the strain data of the film, the true stress - strain curve of 

the film was obtained. This "non-touching" methodology (i.e. using DIC) to get stress - strain 
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curves was going to give extremely accurate results in comparison with traditional methods, such 

as using strain gauge, especially for such thin samples. 

3.3 Results and Discussion 

3.3.1 Microstructure of As-Deposited Al-Mn  

Microstructure of as-deposited monolithic Al-Mn was studied by TEM and SAD, as 

shown in Fig. 3.5. Increasing Mn% in the alloy leads to a phase transition from a supersaturated 

fcc structure to a completely amorphous phase, similar to electrodeposited Al-Mn (Ruan et al. 

2009). At 5.2 at.% Mn, Fig. 3.5(a) shows that sample M5 contains a single fcc phase (lattice 

constant a = 4.036 Å) with an average grain size <d> of ~15 nm. At the intermediate Mn 

concentration of 11.5 at.%, M11 contains a complex dual phase structure, where nanocrystalline 

fcc (a = 4.035 Å and <d> = 12 nm) and amorphous phases coexist. Further increasing Mn 

concentration to 20.5 at.% leads to the formation of a completely amorphous microstructure of 

M20, as confirmed by the diffuse halo in the SAD pattern (Fig. 3.5(f)).  

3.3.2 Tensile Behavior of Monolithic and Multilayered Samples    

Typical true stress-strain curves of the monolithic and multilayer samples are shown in 

Fig. 3.6. The arrows indicate the critical strains (εc). Table 3.1 lists the mechanical properties 

obtained from the stress-strain curves, including elastic modulus (E), fracture stress (σf, i.e. the 

film stress at its critical strain), critical strain (εc), and fracture toughness (KIc). The mode I 

critical SIF KIc (fracture toughness) was calculated from the critical ERR Gc as (Freund et al. 

2003): 

     
   

    
 ,       (3.1) 

where E and ν are the elastic modulus and the Poisson's ratio of the film, respectively. Gc was 

calculated as (Beuth Jr 1992): 
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            ,     (3.2) 

where hT is the total thickness of the film (~1.2 µm), g (α, β) is a dimensionless quantity 

determined by the elastic mismatch between the film and the substrate, and α and  β are the two 

Dundurs’ parameters defined as: 

  
       

       
              

                   

                   
 ,    (3.3) 

where             is the plane strain tensile modulus and µ is the shear modulus. The 

subscripts 1 and 2 refer to the film and the PI, respectively. In this work, α ranges from 0.87 to 

0.95, β ≈ α/4 and g (α, β) are linear interpolation values obtained from reference (Beuth Jr 1992). 

It should be noted that the ERR calculated from eqn. (3.2) considers a single channeling crack in 

a thin film on a semi-infinite substrate, while the effect of crack spacing on G is neglected. For 

deformed ductile thin films such as Cu on compliant substrate, parallel channel cracks are often 

observed perpendicular to the loading direction. It was shown that the ERR of such thin films 

increases with crack spacing for a given film (and substrate) thickness and eventually reaches a 

maximum (saturated) value that corresponds to the case with a single isolated crack (Huang et al. 

2003). However, as will be shown later in section 4.2, the deformed amorphous Al-Mn (M20) 

thin films studied here do not exhibit the typical parallel channel cracks, but rather extensive 

shear bands inclined or perpendicular to the loading direction. For samples with Cu buffer layers, 

such as B1, B2 and S, parallel cracks were indeed observed (Fig. 3.8(b-d)), with crack spacing 

between ~ 50 nm to 100 µm and crack spacing to film thickness ratio around ~ 42-83. In such 

cases, the ERR is approaching the saturated value as calculated here. Hence, considering the 

behavior of both monolithic (M20) and layered samples (B1, B2, and S), we neglect the effect of 

crack spacing and adopt eqn. (3.2) to calculate G for simplicity, while it should be noted that 

such calculations correspond to an upper limit of the steady state ERR for some samples.  
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 Representative true stress-strain curves of all samples are shown in Fig. 3.3. For all 

monolithic samples, the stress reaches a maximum at the critical strain, followed by a stress 

relaxation due to crack and/or shear band formation. In addition, all mechanical properties, 

including f,  , and KIc were found to increase with Mn %, with M20 exhibiting the highest 

values of all, as shown in Fig. 3.7 and Table 3.1. However, at the highest Mn concentration (20.5 

at.%), the amorphous nature of M20 renders a very low tensile ductility (~0.46%). This is not 

surprising given that amorphous alloys lack sufficient intrinsic mechanisms to hinder crack 

propagation or strain hardening (Schuh et al. 2007). Fig. 3.8(a) shows a typical SEM image of 

the surface of M20 at the critical strain. Extensive shear bands, either inclined at an angle of ~45
o
 

or perpendicular to the loading direction can be seen (indicated by white arrows), which 

contribute to the failure of an amorphous material (Schuh et al. 2007).  

 The critical strains remain very low (less than 0.65%) for all monolithic samples 

regardless of their crystallinity, similar to the behavior of brittle thin films, such as Cr (< 1%) 

(Cordill et al. 2010) and Ta (0.6%) (Frank et al. 2009) on PI. To improve the film/substrate 

adhesion and stretchability of the system, bilayered (B1 and B2) and trilayered(S) samples were 

designed via extrinsic toughening mechanisms (Hofmann et al. 2008; Ritchie 2011). Fig. 3.6(b) 

shows the true stress-strain curves of all layered samples (B1, B2, and S). It can be seen that 

while εc occurred in the elastic domain in all monolithic samples (Fig. 3.6a)), it always occurred 

after extensive "plastic" deformation in the multilayered samples. Fig. 3.7(a) shows that the 

bilayer scheme (B1) can enhance the elongation of M20 by more than 13 times (from 0.46% to 

6.24%). However, at the same time, the fracture toughness decreased from 1.38 to 0.79 

MPam
1/2

. In contrast to B1, B2 samples maintained high fracture toughness of M20 and 

moderate improvement of critical strain (from 0.46% to 2.32%). Finally, the trilayered sample S 
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turned out to be the optimized solution, which exhibits a combination of high ductility (5.67%), 

fracture stress (~284 MPa) and fracture toughness (1.13 MPam
1/2

). The following discussions 

justify these experimental observations. 

3.3.3 Fracture Mechanisms at the Brittle/Ductile Interface in the Multilayered Samples 

In a ductile/brittle layered structure, crack often initiates in the brittle layer and then 

travels to the ductile/brittle interface (Wu et al. 2014). As long as the thickness (h) of the ductile 

layer (e.g. Cu in this work) is much larger than its Burgers vector, emitted dislocations will move 

away from the crack tip under tensile loading (Hsia et al. 1994). In the ductile layer, emitted 

dislocations will blunt the crack tip and therefore reduce the tensile stress at the crack tip. Hence, 

the crack propagation process is suppressed, since the crack tip stress is unable to reach the 

cohesive tensile strength of the interface (Hsia et al. 1994). Moreover, if the strength of the 

ductile material is increased, its fracture toughness will be increased because of the plastic 

deformation during crack propagation (Was et al. 1996). Therefore, adding a ductile Cu layer has 

the potential to improve the ductility as well as the fracture toughness of the amorphous Al-

Mn/PI structure. However, the dislocations emitted in the ductile layer are also confined by the 

brittle layer. These dislocations pile up at the interface, generating additional stress at the crack 

tip, which hinders further dislocation emission and blunting process at the crack tip (Anderson et 

al. 1993). Gradually, the tensile stress at the blunted crack tip reaches a critical strength resulting 

in fracture. Therefore, the fracture toughness of the film depends on the number of dislocations 

emitted, which in turn depends on the thickness of the ductile layer (Hsia et al. 1994).  

 What is the appropriate ductile layer thickness that should be added to the amorphous 

M20 sample to optimize its ductility and fracture toughness? We approach this problem by 

evaluating the constraining effect of the ductile layer on the fracture behavior of a composite 
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material consisting of alternating ductile and brittle layer(s). In a ductile metallic layer with a 

crack, the plastic zone size at the crack tip can be estimated as (Hsia et al. 1994): 

   
 

  
 
   

  
 
 

,      (3.4) 

where     is the fracture toughness and    is the yield strength of the material. When the layer 

thickness (h) of the ductile phase is large, the plastic zone size is on the order of millimeters or 

even centimeters, similar to its bulk counterpart. However, in thin films with   ranging from a 

few micrometers to ~10 nm, the plastic zone is confined (     ), resulting in a reduced fracture 

toughness (Hsia et al. 1994; Varias et al. 1991). In this case, dislocation activities in ductile thin 

film (Cu layer) no longer obey the continuum plasticity theory. The discrete dislocations interact 

with the crack tip and the interfaces, which serve as barriers preventing dislocations from 

crossing over into the brittle layer. Because of this dislocation confinement, fracture toughness 

increases with the ductile layer thickness (Hsia et al. 1994). For example, Wu et al. (Wu et al. 

2014) showed that in Cu/Mo multilayers coated on PI, the adhesion energy remains low when 

the thickness of the ductile Cu layer (hCu) is below ~25 nm, but increases rapidly with hCu 

afterwards. Zhang et al. (2011) studied the effect of layer thickness on the fracture behavior of 

Cu/Nb and Cu/Zr multilayers coated on PI. They found that the fracture mode of the mutlilayers 

is controlled by the constraining effect of the Cu layer and the fracture toughness increases with 

hCu and reaches a steady-state at hCu > 20-30 nm. On the other hand, when hCu is reduced to less 

than ~15 nm, dislocation activities are greatly suppressed and their shielding effect is minimized, 

resulting in a significant reduction of deformability of the Cu layers (i.e. Cu layers become more 

brittle). Based on the above discussion, we chose hCu of 50 nm and 100 nm to be added to the 

monolithic Al-Mn/PI structure (samples B1, B2, and S) in order to optimize the ductility and the 

fracture properties of amorphous thin film on PI substrate.  
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 Next, a fracture model proposed by Hsia et al. (1994) was employed to justify the effect 

of Cu layer thickness on the fracture behavior of B1 and B2 samples. In this model, crack 

propagation in a composite structure composed of submicron thick ductile and brittle layers is 

considered. This model considers the constraint effect of the ductile layer on the propagation of a 

crack initiated at the brittle layer and blocked by the interface. As discussed above, the 

dislocations emitted from the crack tip blunt the crack tip and consequently reduce the tensile 

stress at the crack tip. At the same time, these emitted dislocations also pile up at the interface 

sending back a stress to the crack tip, impeding further dislocation emission. Based on the crack 

tip shielding and blunting effects by the emitted dislocations, the equilibrium number of 

dislocations ( ) is determined as (Hsia et al. 1994): 

  
       

   
  

  
 
 
        

    
       

 

 
    ,    (3.5) 

where   = 0.328 is the Poisson's ratio of Cu (Yu et al. 2004) and A is a factor that is slightly 

greater than unity (Hsia et al. 1994).       ,   ,    and    are the normalized values defined as: 

      
    

   
 ,    
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,    (3.6) 

where      is the far field SIF of the Cu thin film. The values of      are 0.97 and 1.17 

MPam
1/2

 for the Cu layers in B1 and B2, respectively, calculated from equations (3.1)-(3.3) (σCu 

is thickness-dependent, taking the values of 1180 MPa and 1000 MPa for the Cu layers in B1 and 

B2, respectively (Zhang et al. 2008a); ECu is 90 GPa (Yu et al. 2004); gCu (α, β) is 8.65 for both 

the Cu layers in B1 and B2 (Beuth Jr 1992)).   is the shear modulus of Cu, taking the value of 

33.89 GPa (Yu et al. 2004),           assuming that the crack has a semi-circular front, and 

               being the maximum distance the leading dislocation can travel before it is 

blocked by the interface.   is the angle that the slip plane inclines from the interface (  is chosen 
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as 45 without a loss of generality).   is the Burgers vector of Cu (2.56 Å).    is the normalized 

surface energy (   ≈ 0.1684 estimated from Rice et al. (1974)).    is the effective core radius of 

dislocations (         nm (Hsia et al. 1994)). The equilibrium number of dislocations 

estimated from equation (3.5) is 22 and 28 for the Cu films in B1 and B2, respectively.  

 With the presence of the shielding effect of the dislocations, the SIF at the crack tip is 

defined as (Hsia et al. 1994):  

            ,     (3.7) 

where    is the contribution of the dislocations to the stress intensity at the crack tip (Hsia et al. 

1994):  

   
  

          

 

 
       

 

 
.     (3.8) 

The maximum tensile stress at the crack tip is determined as (Hsia et al. 1994): 

      
    

   
.      (3.9) 

Using the input values described above,      were estimated to be 0.92 MPam
1/2 

and 1.13 

MPam
1/2

, and      were estimated to be 1.94 GPa and 2.12 GPa for the samples B1 and B2, 

respectively. The higher value of the crack tip stress intensity (    ) in B2 shows that a thicker 

Cu layer can accommodate more damage and emit larger number of dislocations before fracture. 

These results are in agreement with our experimental observations that the fracture toughness of 

the whole B2 sample is higher than B1 (Fig. 3.7(c)).  Moreover, the fact that maximum tensile 

stress at the crack tip (    ) in B2 is larger than that in B1 (along with the substrate effect as 

discussed later in section 4.2) suggests that the Cu layer in sample B2 has a higher stress 

concentration than in B1, making the elongation of B2 smaller than B1, which agrees well with 

our experimental observations (Fig. 3.7(a)).   
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 Finally, let us consider the behavior of the sandwiched trilayer sample S, which is the 

optimized solution that exhibits a combination of high ductility (5.67%) and high fracture 

toughness (1.13 MPam
1/2

). Since cracking of nano-scaled multilayer films is initiated in the 

brittle layers and hindered by the ductile layers (Wu et al. 2014), in the cases of B1 and B2, the 

micro-cracks initiated at the top surface of the Al-Mn film and propagated to the Cu/Al-Mn 

interface. For sample S, having another Cu layer on the top will delay the crack initiation at the 

brittle Al-Mn layer, which eventually leads to the ductility enhancement. 

3.3.4 Failure Mechanisms at the Film/Polymer Interface in Multilayered Samples  

Together with the fracture mechanisms at the brittle/ductile interface, those at the 

film/polymer interface also contribute significantly to the fracture behavior of the multilayered 

samples. SEM image in Fig. 3.8(b) shows the surface of the sample B1 at the critical strain. The 

presence of channeling cracks through the width without any shear bands confirmed the ductile 

fracture via the bilayer scheme (Was et al. 1996; Zhang et al. 2014). It is likely that the presence 

of a thin (50 nm) Cu layer dissipated the energy from the amorphous alloy layer to the PI 

substrate and thereby delayed the final failure (Chen et al. 2011a; Kou et al. 2014).  

 In sample S, the Cu layers limit the propagation of some shear bands distributing the 

plastic strain to many other bands, delaying fracture, which is why large strain was observed. 

The failure mechanism can be explained as follows. First, even with a thick (100 nm) Cu layer 

between the alloy and PI, which slows down the energy dissipation from the Cu layer to PI, 

sample S still possesses high ductility because of its hierarchical structure of the three layers. The 

three layers deform differently, i.e. the top surface Cu layer maintains/stabilizes ductility (of the 

Al-Mn layer) and together with the inner Cu layer they dissipate energy via their plasticity, 

preserving ductility and delaying the final failure of the whole structure (Chen et al. 2011a; Kou 
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et al. 2014). Second, it was observed in the DIC program that there were nearly no strain 

localizations on the sample S’ surface. The idea of strain non-localization was first introduced to 

improve the ductility of nano-materials by designing three-layered stainless steel sheets with 

surface mechanical attrition treatments and co-rolling processes (Chen et al. 2008; Lu et al. 

2004). Strain non-localization mitigates the initiation of one critical major crack and delays the 

crack propagation by transferring the originally localized cracks to other positions (Kou et al. 

2014). According to Lu et al. (2009), the critical condition for strain localization to take place is 

debonding between the film and the substrate, since debonding makes the film locally free-

standing and thus necking of the film will be accommodated by local elongation. Fig. 3.9 shows 

FIB images of the cross-section view of the tested S specimen and confirms that there was no 

debonding at the film/PI interface, and thereby no strain localization in the S samples. Since a 

strong bonding between the film and the PI substrate is very critical in maintaining high ductility 

for such systems, the work in chapter 4 will be an attempt to increase the adhesion of the 

film/polymer interface. 

3.4 Finite Element Simulations 

To provide further insight into the failure mechanism and to evaluate the interfacial 

fracture toughness of the film/PI systems under tensile loading, finite element simulations were 

performed using Ansys (version 17). A two dimensional plane-strain model of the multilayered 

film on PI substrate under uniaxial tension was constructed, similar to that in (Zhang et al. 

2008b). The total metallic film thickness hT is 1.2 µm and the PI substrate thickness is 7.6 µm. 

The length l of the film/substrate system was set at 3.12 µm. The material properties used in the 

FEM model are listed in Table 3.2. The stress-strain curve of PI is obtained from the 

manufacturer specifications (Dupont 2004) and that of Cu thin film is from Ref. (Yu et al. 2004). 
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The properties of the Al-Mn alloy layer were obtained from experiments, as listed in Table 3.1. 

With the implementation of the CZM (Park et al. 2013) in Ansys APDL, the strain energy 

density distribution, von Mises equivalent stress distribution and J-integral (which represents 

interfacial adhesion) were obtained. 

 Cohesive zones were defined at both the film itself and the interface between the film and 

the PI substrate. Exponential law was selected as the cohesive law, which describes 

mathematically the separation or debonding of two parts of the film and of two material surfaces 

(Park et al. 2013). The stress for which the crack opening starts was assumed to be equal to the 

yield stress or the fracture stress of the material considered (Dugdale 1960), i.e. Cu and Al-Mn 

alloy. The maximum normal traction for which the film/substrate interface starts to debond was 

assumed to be equal to the yield stress or fracture stress of the material that adheres to the PI 

substrate (Xu et al. 2010). Normal separation across the interface and the shear separation, where 

the maximum normal traction is attained, were assumed to be identical and obey the law of the 

fracture energy represented in (Xu et al. 2010). To introduce an imperfection where the crack can 

nucleate, a V-shaped notch 0.2hT wide and 0.02hT deep was placed at the top of the film (Li et al. 

2007a; Lu et al. 2010; Zhang et al. 2008b). Both the film and the substrate were meshed by the 

two-dimensional 8-node structural solid elements Plane183 with the plane strain option. The 

interfaces were meshed by the 6-node cohesive elements Inter203. The vertical displacement 

along the bottom of the substrate as well as the horizontal displacement along the centerline of 

the system were set to zero, whereas a uniform horizontal displacement of u/2 was applied to 

both sides of the film/substrate system. The nominal strain of the system is then u/l, where l 

denotes the length of the film/substrate system. Finally, convergence analysis was performed to 
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get the optimal mesh. Fig. 3.10 shows the sketch of a bilayered sample with the above defined 

cohesive zones. 

 To investigate the adhesion of the interface between two dissimilar, non-linear elastic 

materials (i.e. the film/PI system), path-independent J-integral has been proven to be the only 

feasible computational method (Anderson 2005; Rice et al. 1965; Tran et al. 2013). A strain of 

0.46% (i.e. critical strain of the sample M20) was applied to all multilayer samples. Twelve 

contours were defined around the crack tip, which rested at the film/substrate interface, to 

calculate the converged J-integral values. Fig. 3.11 shows the elastic strain energy density 

distribution of the M20 and S samples at 0.46% strain. It can be seen that the presence of a Cu 

layer sustained a high amount of strain energy. This confirms that the two Cu layers dissipate 

energy via their plasticity, together with the ductility of the polymer substrate, preserving the 

ductility and then delaying the final failure of the whole metallic system (Chen et al. 2011a; Kou 

et al. 2014). Fig. 3.12 shows the von Mises equivalent stress distributions of M20 and S. The two 

Cu layers sustain much of the stress distributed to the whole film, which obviously reduces the 

stress that the alloy layer has to endure. This makes the elongation of the sample S larger and the 

alloy layer can possess higher critical stress at its critical strain. The J-integrals of the 

film/substrate interface at the same strain of 0.46% (Fig. 3.13) show that the adhesion of the 

interface increases significantly with the added Cu layers (from 0.34 J/m
2
 for M20 to 0.45 J/m

2
 

for B2 and S). This result confirms that the bonding between the film and the substrate was 

improved, making it a critical condition for strain non-localization, delaying the crack 

propagation by transferring the originally localized cracks to other positions (Kou et al. 2014; Lu 

et al. 2009). 
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 Finally, to evaluate the ability of the multilayered film/PI systems to resist delamination 

at the film/polymer interface, interfacial fracture toughness (i.e. critical J-integrals) of all 

samples were calculated (Tran et al. 2013). Samples M20, B1, B2 and S were applied with their 

experimental critical strains of 0.46%, 6.24%, 2.32% and 5.67%, respectively (Fig. 3.7(a)). The 

results in Fig. 3.14 show that with the sandwiching scheme, the interfacial fracture toughness can 

be enhanced twenty four times from 0.34 J/m
2
 (sample M20) to 8.13 J/m

2
 (sample S). This result 

again confirms the significant improvement of the adhesion between the film and the substrate 

via the sandwich structure. 

3.5 Conclusions  

Mechanical properties of monolithic and multilayered Al-Mn thin films coated on PI 

substrates were studied by tensile testing and finite element methods. Among the monolithic 

films, the amorphous Al-Mn possesses the highest fracture toughness, but limited ductility and 

poor resistance to interfacial delamination. To improve the stretchability of the system without 

compromising the fracture toughness, bilayered and trilayered films were designed by adding Cu 

buffer layers to the system. It was found that the bilayered structure with 50 nm Cu buffer layer 

improves the ductility of amorphous Al-Mn by more than ten times while the trilayered structure 

optimizes both ductility and fracture toughness. Analytical modeling and finite element analysis 

show that in the trilayered structure, the topmost Cu layer retards crack initiation, while the inner 

Cu layer dissipates strain energy and improves film/PI adhesion. In this case, the elongation was 

enhanced more than ten times and the interfacial fracture toughness twenty four times with a 

limited sacrifice of fracture toughness (less than 18%).  



www.manaraa.com

54 

 

The results of this chapter thus provide important guidelines for optimizing mechanical 

properties of future flexible electronics, whose performance requires reasonable ductility of 

crystalline and amorphous metallic films on polymer substrates.   
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3.6 Tables and Figures  

Table 3.1 Composition and mechanical properties of monolithic (M5, M11, and M20), bilayered 

(B1 and B2), and trilayered (S) Al-Mn thin films deposited on PI substrates. hCu is the thickness 

of the Cu layer(s) in the samples. The critical strain (εc), fracture stress (σf) and elastic modulus 

(E) were measured from the stress-strain curves of uniaxial tensile tests. The Poisson's ratio (ν) 

was estimated using the rule of mixtures from pure Al and Mn (Cardarelli 2008). Critical J-

integrals of the film/substrate interface (interfacial fracture toughness) of samples M20, B1, B2, 

and S were calculated by FEA at their corresponding critical strains. 

 

Sample 

ID 
Composition 

hCu 

(nm) 

εc 

(%) 

σf 

(MPa) 
ν 

E 

(GPa) 

KIc 

(MPam
1/2

) 

Crit. J-int. 

(J/m
2
) 

M5 Al-5.2 at.% Mn - 0.63 ± 0.06 199.1 ± 8.6 0.34 39.4 ± 7.3 0.58 - 

M11 Al-11.5 at.% Mn - 0.57 ± 0.08 221.1 ± 13.4 0.33 62.3 ± 5.9 0.78 - 

M20 Al-20.5 at.% Mn - 0.46 ± 0.01 321.7 ± 22.7 0.32 103.6 ± 2.9 1.38 0.34 

B1 Cu|Al-20.5 at.% Mn 50  6.24 ± 1.14 220.8 ± 11.9 0.32 67.8 ± 2.6 0.79 8.55 

B2 Cu|Al-20.5 at.% Mn 100  2.32 ± 0.24  324.3 ± 15.9 0.32 90.7 ± 11.6 1.21 2.19 

S Cu|Al-20.5 at.% Mn|Cu 100  5.67 ± 0.69 284.1 ± 5.6 0.32 94.9 ± 10.8 1.13 8.13 

 

 

Table 3.2 Material properties used in the FEM model. Properties of PI are from the manufacturer 

(Dupont 2004) and those of Cu thin film are from reference (Yu et al. 2004), while the properties 

of the Al-Mn alloy layer are from experiments as listed in Table 3.1. 
 

Material E (GPa) ν σY (MPa) σf (MPa) 

PI 2.5 0.34 69 - 

M20 103.6 0.32 - 321.7 

Cu 127 0.34 881.98 - 
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Figure 3.1 Sketch of monolithic sample geometry (M5, M11 and M20). 

 

 

Figure 3.2 Sketch of bilayered sample geometry (B1 and B2). 
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Figure 3.3 Sketch of trilayered sample geometry (S). 

 

 

Figure 3.4 Evolution of electrical resistance change (defined as (R-R0)/R0, where R0 is the initial 

electrical resistance of the film) of a monolithic Al-5.2at.%Mn (sample M5) as a function of 

strain. 
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Figure 3.5 (a-c) TEM images and (d-f) corresponding SAD patterns of as-deposited monolithic 

Al-Mn films with various Mn % as defined in Table 3.1. 
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Figure 3.6 (a) Representative true stress-strain curves of M5, M11 and M20 and (b) B1, B2 and S 

samples. The arrows indicate the critical strains εc. 
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Figure 3.7 (a) Critical strain, (b) fracture stress, and (c) fracture toughness of all monolithic, 

bilayered, and trilayered samples. Error bars represent standard deviation obtained from at least 

four separate tests. 
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Figure 3.8 SEM images of sample (a) M20, (b) B1, (c) B2 and (d) S at its respective critical 

strains. Uniaxial loading is applied in the horizontal direction in all samples as shown in (a). 

White arrows in (a) show the extensive shear bands formed either inclined at an angle of ~ 45
o
 or 

perpendicular to the loading direction. 
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Figure 3.9 (a) and (b) Cross-sectional ion beam images of the S sample at its critical strain. 

Image (b) was obtained after extensive ion etching of the crack in (a) to reveal the sandwich 

structure. 

 

 

Figure 3.10 Sketch of a bilayered sample with cohesive zones. 
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Figure 3.11 Elastic strain energy density distributions of sample (a) M20 and (b) S at a strain of 

0.46%. 
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Figure 3.12 Equivalent stress distributions of sample (a) M20 and (b) S at a strain of 0.46%. 

 

Figure 3.13 J-integrals of the film/substrate interface at the applied strain of 0.46%. 
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Figure 3.14 Critical J-integrals of the film/substrate interface of the sample M20, B1. B2 and S at 

their critical strains of 0.46%, 6.24%, 2.32% and 5.67%, respectively. 
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CHAPTER 4: EFFECTS OF SUBSTRATE ROUGHNESS AND BUFFER LAYER 

PROPERTIES ON THE INTERFACE ADHESION OF BRITTLE THIN FILMS ON 

POLYIMIDE SUBSTRATES  

 

4.1 Introduction  

 Ductility and fracture resistance of metallic interconnect thin films coated on polymer 

substrates are strongly influenced by the film/substrate interface adhesion. It was shown that the 

improved metallic film/polymer substrate adhesion delays the interface debonding (George et al. 

2005; Xiang et al. 2005). Therefore, the film is constrained by the substrate, retarding the strain 

localizations, such as neckings or the shear band formations in the film, which leads to a larger 

failure strain (George et al. 2005; Li et al. 2005b; Li et al. 2007a; Xiang et al. 2005; Zhang et al. 

2008b). On the other hand, if the metallic film delaminates from the substrate because of weak 

adhesion, the support from the substrate is lost, and the film becomes freestanding and is free to 

form a neck, resulting in the failure at a smaller strain (Li et al. 2005b; Lu et al. 2009; Xiang et 

al. 2005; Zhang et al. 2008b). To increase the toughness of the interface, the interface has to play 

an important role in releasing the stresses to the adjacent layer, resulting in a smaller probability 

of delamination (He et al. 1993; Odette et al. 1992; Was et al. 1996). This observation results 

from two mechanisms: either the debonding of the interface (if the interface adhesion is weak) or 

the plastic slip normal to the crack plane (if one of the adjacent materials is ductile) (Was et al. 

1996). 
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 Various strategies have been applied to enhance the metallic film/polymer substrate 

interface adhesion.  The strategies involve mechanical and design parameters including interface 

roughness, material and thickness of the adjacent buffer layer (Dauskardt et al. 1998; Frank et al. 

2009; Lin et al. 2008; Misra et al. 2005; Schuh et al. 2007; Xu et al. 2011). Despite the recent 

progress, there have been very limited attempts to work on the ductility and fracture behavior of 

amorphous brittle film coated on polymer substrates, especially under tensile loading conditions.  

 Such considerations have motivated us to improve the situation. Since a strong bonding 

between the film and the polymer substrate is critical to maintain high ductility and fracture 

resistance for such systems, this chapter will evaluate strategies to improve the adhesion of the 

film/polymer interface including roughening the surface of the polymer substrate, adding a 

buffer layer and then tuning its thickness. The investigated system is 7.6 µm PI substrate 

magnetron sputtering coated with 1.2 µm Al-Mn alloy thin film in which the crystallinity of the 

film was tuned by varying Mn concentration in the alloy. A homogenous brittle amorphous 

phase was obtained with 20.5 at.% Mn addition, confirmed by energy dispersive spectra (Ruan et 

al. 2009). Using the same procedure described in chapter 3, tensile tests of monolithic Al-Mn 

alloy coated on PI were performed to obtain its mechanical properties. FE simulation is the main 

focus of this chapter. 

4.2 Experimental Procedure  

 First, tensile experiments were conducted to obtain the critical strain (εc), i.e. the 

macroscopic strain, which characterizes the microcrack formation (as opposed to rupture), by 

electrical resistance change method; and the stress-strain curve of Al-20.5 at.% Mn alloy 

(hereafter referred as Al-Mn for simplicity) thin film coated on PI substrate (named as sample 
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M), from which mechanical properties including fracture stress (σf) and elastic modulus (E) were 

extracted.  

 The experiments were performed with the same procedure as mentioned in section 3.2. 

The samples of 1.2 µm Al-Mn alloy thin films were sputtered on 7.6 µm thick PI foils. 

Microstructure of as-deposited monolithic Al-Mn samples was characterized using TEM and 

SAD and it shows a completely amorphous phase. Uniaxial tensile tests (DTS, National 

Instruments) were carried out and the critical strain εc was also obtained by electrical resistance 

change method. Fig. 4.1 shows a typical evolution of electrical resistance change during a tensile 

test, where εc is defined at the point where the electrical resistance deviated from the ideal curve 

(Lu et al. 2007; Niu et al. 2007). With the use of DIC method, the true stress-strain curve of a 

monolithic Al-Mn alloy sample was obtained and shown in Fig. 4.2. The mechanical properties 

of the Al-Mn alloy were extracted and listed in Table 4.1.   

 Second, to see the potential effects of the rough PI substrate and the buffer layer on the 

thin film/substrate adhesion, tensile tests were conducted on the monolithic Al-Mn and bilayer 

20 nm Cr|Al-Mn films coated on both flat and rough PI substrates. Table 4.2 shows the four 

samples used in our experiments and their experimental critical strains and simulation J-integral 

values (will be mentioned latter). 

 To get rough PI substrates of 100 nm Ra (i.e. arithmetic average of absolute values of 

surface profile), oxygen plasma etching (Plasma-Therm PECVD/RIE) was operated at oxygen 

flow of 50 cc/s, 20 Torr process pressure and 35 W of RF power for 120 seconds in RIE mode. 

The roughness was measured by Dektak D150 profiler. All four samples were tensile tested with 

the same procedure and devices. Their experimental critical strains and simulation J-integral 

values are shown in Table 4.2, except the critical strain of samples MCr20. The film/substrate 
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adhesion of those samples was too weak, so the films delaminated whenever they were in contact 

with hands. 

 The above four samples were chosen to show the correlation between the experimental 

critical strains and the simulated J-integrals, which represent the film/substrate adhesion 

(Anderson 2005; Rice et al. 1965; Tran et al. 2013). The ductility of a metallic thin film/substrate 

system in tensile tests is governed by three main factors including dislocations emitted from the 

crack tip (Hsia et al. 1994; Zbib et al. 2011), the adhesion at the film/substrate interface 

(Dauskardt et al. 1998; Xiang et al. 2005; Zbib et al. 2011), and the dislocation-interface 

interaction (Zbib et al. 2011). If there exists a ductile buffer layer or if the film is a ductile 

material, dislocations emitted from the crack tip will blunt the crack tip and therefore reduce the 

tensile stress at the crack tip resulting in the suppression of the crack propagation process, since 

the crack tip stress is unable to reach the cohesive tensile strength of the interface (Hsia et al. 

1994). In all chosen samples which are either brittle monolithic amorphous film (i.e. M and M-

R) or buffered by a brittle layer (i.e. MCr20 and MCr20-R), the effects of dislocations can be 

neglected. Therefore, their experimental critical strains correlate to the film/substrate adhesion 

(hence, J-integrals) mainly. 

 Looking at the critical strains and J-integral values of M and M-R in Table 4.2, it can be 

seen that the J-integral values are directly proportional to the critical strains. The same tendency 

can be observed in the MCr20 and MCr20-R samples assuming that the critical strain of MCr20 

is very low. The observation has motivated us to further investigate the effect of rough PI 

substrates and buffer layers on the Al-Mn amorphous metal thin film/substrate adhesion. 

Moreover, this correlation once again verified the simulation models. 
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4.3 Finite Element Simulations 

 In order to investigate systematically the effect of rough PI substrates on the amorphous 

metallic film/substrate interface adhesion, a series of simulations was performed categorized in 

two groups of samples: without and with 100 nm Ra roughness on the PI substrate surfaces. 

Among the two groups, to study the effects of buffer layers (material and layer thickness) on the 

adhesion, Al and Cr were used with layer thicknesses of 20, 50, 75 and 100 nm. This range of 

thicknesses was chosen based on some previous results. For example, the authors in reference 

(Wu et al. 2014) proved that the adhesion energy in Cu/Mo multilayers coated on PI remains low 

when the thickness of the ductile layer (i.e. Cu) is below ~25 nm and increases with the 

thickness. Zhang et al. (2011) studied the effect of layer thickness on the fracture behavior of 

Cu/Nb and Cu/Zr multilayers coated on PI. They found that the fracture mode of the mutlilayers 

is controlled by the constraining effect of the ductile layer (i.e. Cu) and the fracture toughness 

increases with its thickness and reaches a steady-state when the thickness is lager than 20 nm. 

Reducing the ductile layer thickness to less than ~15 nm, dislocation activities are greatly 

suppressed and their shielding effect is minimized, resulting in a significant reduction of 

deformability of the Cu layer or, in other words, the Cu layer becomes more brittle. This 

conclusion was confirmed by others (Misra et al. 2005; Was et al. 1996). Moreover, the authors 

in references (Frank et al. 2009; Park et al. 1998) showed that a 20 nm buffer layer can improve 

the adhesion between Cu/PI or alumina/PI. Lastly, Al and Cr were chosen to represent a more 

ductile (and softer), and more brittle (and stronger) material, respectively, compared to Al-Mn 

alloy. Table 4.3 shows all the samples used in simulations. 

 The properties of the Al-Mn alloy were obtained from our experiments (Table 4.1). The 

stress-strain curve of PI is obtained from the manufacturer specifications (Dupont 2004) and 
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materials properties of Al, Cr layers are from references (Cardarelli 2008; Cordill et al. 2010; Yu 

et al. 2004). All the metallic materials were assumed to have elastic-perfectly plastic behavior. 

The material properties used in the FEM models are summarized in Table 4.4.  

 The computational models based on FEM were performed using ANSYS (version 17). A 

two dimensional plane-strain model of the multilayered film on PI substrate under uniaxial 

tension was constructed, similar to those in references (Li et al. 2004; Li et al. 2005b; Li et al. 

2007a; Lu et al. 2010; Zhang et al. 2008b) and verified by the results in reference (Zhang et al. 

2008b). The total metallic film thickness hT is 1.2 µm, in which the buffer layer thickness in the 

bi-layer samples ranges from 20, 50, 75 to 100 nm, and the PI substrate thickness is 7.6 µm. The 

length l of the film/substrate system was set at 3.12 µm. Similar to section 3.4 and Fig. 3.7, CZM 

was implemented to get the J-integral values of flat samples (samples without roughness on PI 

surface). A strain of 4.66% (i.e. critical strain of the sample MCr20-R, Table 4.2) was applied to 

all samples. Twelve contours were defined around the crack tip, which rested at the 

film/substrate interface, to get the converged J-integral values. Table 4.3 shows all the J-integral 

results. 

 To get the simulation of the rough PI samples, a FEM model of the bilayered system with 

rough PI substrate was constructed. For simplicity, the film/PI interface was assumed to be wavy 

with the idealized sinusoidal shape of the formula: 

      
  

 
 ,      (4.1) 

where   is the amplitude, λ is the wavelength and   is the horizontal coordinate. For the 

roughness of 100 nm Ra, λ and   take the values of 2 μm and 100 nm, respectively. The length l 

of model was equal to 2λ, i.e. two sinusoidal periods. The nominal strain of the system was then 

u/l = u/(2λ). 
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 Superior to the model in reference (Xu et al. 2011) where the film was simulated to be 

bonded to the wavy PI substrate, in this chapter the cohesive zones were introduced both inside 

the layers (at the crack) as well as at the film/substrate interface, similar to the above mentioned 

flat surface model. All the other geometry, material parameters and boundary conditions are the 

same as the flat surface model. The convergence analysis was performed again with the mesh to 

get the mesh-independent results. Fig. 4.3 shows the sketch of a bilayered rough sample with the 

cohesive zones and Table 4.3 shows all the J-integral results. 

4.4 Results and Discussion 

4.4.1 Effects of the Buffer Layer Material Properties on the Interface Adhesion 

 Fig. 4.4 shows J-integrals of M, M-R, MAl20, MAl20-R, MCr20 and MCr20-R samples. 

It can be seen that among the flat substrate samples, the one with Al buffer layer (MAl20) has 

the highest interface adhesion. This can be explained by the following mechanisms involving the 

stress, strain and plastic deformation. First, in the MAl20 and MCr20 samples, the higher 

equivalent stress of MAl20 (Fig. 4.5(a)) is distributed broadly in the Al-Mn alloy layer (1.2 μm) 

with the maximum value of about 200 MPa. Meanwhile, the higher equivalent stress 

concentrates in the buffer layer of Cr (20 nm) with the higher maximum value of 901 MPa (Fig. 

4.5(b)), which obviously creates a higher traction at the interface, increasing the possibility of 

delamination. That is likely the reason why the interfacial adhesion of MAl20 is about three 

times higher than that of MCr20. Second, it can be seen that there is no yielding in the Al layer 

(since the equivalent stress in the Al layer is much lower than its yield strength, shown in Fig. 

4.5(a)), while all the PI substrates yielded. The plastic strain distribution in sample MAl20 (Fig. 

4.6(a)) shows a high plastic strain concentration (about 31%) near crack tip in the PI substrate 

while in MCr20 (Fig. 4.6(b)) there is only about 5% of plastic strain near crack tip within the 
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substrate PI layer. According to Was et al. (Was et al. 1996), the plastic deformation has a 

significant impact on the toughness of the interface in a multilayer system. A tough interface is 

attributed to extensive plastic work done at the crack tip during crack propagation. The substrate 

PI in MAl20 sample clearly shows the highest plastic deformation among the flat substrate 

samples. Based on the two discussions above, it can be postulated that in order to improve the 

interface adhesion of a brittle film (e.g. Al-20.5 at.% Mn) on a flat flexible PI substrate, a thin 

(e.g. 20 nm) ductile buffer layer (e.g. Al) of smaller yield strength than the fracture strength of 

the brittle film should be added in between the film and the substrate.  

4.4.2 Effects of the Substrate Roughness on the Interface Adhesion 

 It has been shown that interface adhesion can be improved by roughening the substrate 

(Dauskardt et al. 1998; Ma et al. 1995). Results in Fig. 4.4 demonstrate that rough PI substrate 

can improve the interface adhesion within the three samples (M, MAl20 and MCr20). J-integral 

values of the monolithic M-R and MAl20-R have nearly doubled with the presence of substrate 

roughness. In MCr20-R, the interfacial adhesion increases 9 times compared with the flat 

substrate sample MCr20. Moreover, in comparison with its counterparts, i.e. M-R and MAl20-R, 

the interfacial adhesion of MCr20-R is about 5 and 1.5 times, respectively. Note that similar to 

MAl20, there is no yielding in the Al layer of MAl20-R. Hence the fractures in all 6 samples fall 

into the debonding mechanism as categorized in reference (Was et al. 1996). Dauskardt et al. 

(1998) showed that energy dissipation during the debonding was affected by the interface 

morphology due to the increase in frictional sliding of the surface asperities behind the 

debonding tip. A model in reference (Evans et al. 1989) also shows that the increased adhesion 

of a rough interface results from the extension of the frictional contact zone behind the 

debonding tip. Second, rough interface can reduce the tensile stresses along the film surface, thus 
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restraining the channel cracking of the film as well as the debonding (Xu et al. 2011). Lastly, 

high energy dissipation of the film by plastic deformation could be considered a toughening 

mechanism that contributes to the enhanced interface adhesion (Dauskardt et al. 1998). The 

energy dissipation mechanism involves the plastic deformation of the ductile bonding layer(s) 

and the interaction between the crack faces behind the debonding tip. Fig. 4.7 shows the plastic 

strain energy densities of the bi-layer rough samples. It can be seen that the plastic strain energy 

density of the PI substrate in MCr20-R is two times that of MAl20-R. That means the energy 

dissipated to the substrate in MCr20-R is more than that of MAl20-R, making the interface 

adhesion in MCr20-R higher. Therefore, it is postulated that with the condition of the rough PI 

substrate, higher adhesion of an amorphous brittle film/PI interface can be obtained by having a 

buffer layer with higher strength and stiffness. 

4.4.3 Effects of the Buffer Layer Thickness on the Interface Adhesion 

 Fig. 4.8 shows the effects of buffer layer (Al and Cr) thickness on the interface adhesion. 

While the behavior of MAlx and MAlx-R (x = 20, 50, 75 and 100) samples is insenstitive to 

buffer layer thicknesses, MCrx and MCrx-R samples reach their J-integral maximum at x = 75 

nm and the substrate roughness takes its best effect on the adhesion with Cr buffer layer. We will 

thereafter focus on the MCr75-R, which improves the interface adhesion of the base sample M 

by almost 20 times and is therefore the most beneficial case. By systematically increasing the 

thickness of the Cr film, the combined elastic energy stored in the two adjacent layers increases, 

making it higher than the critical condition sufficient to delaminate the interface (Wei et al. 

1997). It can be seen that the Cr layers in MCr75 and MCr75-R possess the highest values of 

elastic energy density compared to MCrx (not shown) and MCrx-R (x = 20, 50 and 100) (Fig. 

4.9), respectively. That means the energy is absorbed more by the thicker Cr layers until the 
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maximum energy absorption ability is reached at x = 75 in MCr75 and MCr75-R samples. In 

other words, the Cr layers of 75 nm dissipate the highest amount of strain energy, increasing the 

ability of preserving ductility and delaying the final failure of the whole system, similar to that 

reported in reference (Kou et al. 2014). 

4.5 Conclusions  

 Interface adhesion of amorphous Al-Mn alloy thin films coated on PI substrates was 

improved by adding buffer layer (Al or Cr) and roughening the substrates. The analysis was done 

by tensile testing and FE simulations. Among the flat substrate samples with a fixed buffer layer 

thickness (20 nm), the one with Al buffer layer (MAl20) has an interfacial adhesion three times 

higher than that of Cr (MCr20). It is postulated that to improve the interface adhesion of the 

system (without roughing the PI), a thin (e.g. 20 nm) ductile buffer layer (e.g. Al) of smaller 

yield strength than the fracture strength of the amorphous film could enhance interface adhesion 

via stress concentration and plastic deformation mechanisms. On the other hand, introducing 

substrate roughness enhances interfacial adhesion of MCr20-R nine times stronger than the flat 

one (MCr20). Moreover, interface adhesion of MCr20 is about 5 and 1.5 times stronger than M-

R and MAl20-R, respectively. Hence, it can be predicted that with the condition of the rough PI 

substrate, higher adhesion can be obtained by having a buffer layer with higher strength and 

stiffness (than the brittle film).  

 When the buffer layer thickness was varied, MAlx and MAlx-R (x = 20, 50, 75 and 100) 

samples show their independency on buffer layer thicknesses, while the MCrx and MCrx-R 

samples reach their J-integral maximums at a thickness of 75 nm. Particularly, MCr75-R 

improves the interface adhesion of the base sample M to almost 20 times and is therefore the 

most beneficial case. It was found that the Cr buffer layer reaches its highest amount of strain 
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energy dissipation ability at the thickness of 75 nm, maximizing the ability of preserving 

ductility and delaying the final failure of the whole system. 

 The results of the present work may shed light on the interfacial engineering strategies for 

improving interface adhesion for flexible electronics, whose performance requires reasonable 

interface adhesion of amorphous metallic films on polymer substrates. The author therefore calls 

for further experimental studies to verify the predictions. 
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4.6 Tables and Figures 

Table 4.1 Composition and mechanical properties of monolithic amorphous Al-Mn thin films 

deposited on PI substrates. The critical strain (εc) was obtained from electrical resistance change 

method (Fig. 4.1) while fracture stress (σf) and elastic modulus (E) were measured from the 

stress-strain curves of uniaxial tensile tests. The Poisson's ratio (ν) was estimated using the rule 

of mixtures from pure Al and Mn (Cardarelli 2008). 

 
Sample 

ID 

Composition 

 

εc 

(%) 

σf 

(MPa) 

ν 

 

E 

(GPa) 

M Al-20.5 at.% Mn 0.46 ± 0.01 321.7 ± 22.7 0.32 103.6 ± 2.9 

 

Table 4.2 Samples used in experiments to get their experimental critical strains. 

Sample 

ID 
Film composition 

PI roughness 

- Ra (nm) 

hCr 

(nm) 

εc 

(%) 

J-integral 

(J/m
2
) 

M Al-20.5 at.% Mn - - 0.46 ± 0.01 0.69 

M-R Al-20.5 at.% Mn 100± 6 - 1.39± 0.1 1.82 

MCr20 Cr|Al-20.5 at.% Mn - 20± 5 - 0.96 

MCr20-R Cr|Al-20.5 at.% Mn 100± 6 20± 5 4.66 8.93 
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Table 4.3 Samples used in simulations to get their J-integral values. 

Sample ID Composition of film 
PI roughness - Ra  

(nm) 

Buffer layer thickness 

(nm) 

J-integral 

(J/m
2
) 

M Al-20.5 at.% Mn - - 0.69 

M-R Al-20.5 at.% Mn 100 - 1.82 

MAl20 Al|Al-20.5 at.% Mn - 20 3 

MAl50 Al|Al-20.5 at.% Mn - 50 2.97 

MAl75 Al|Al-20.5 at.% Mn - 75 2.98 

MAl100 Al|Al-20.5 at.% Mn - 100 3.02 

MAl20-R Al|Al-20.5 at.% Mn 100 20 5.97 

MAl50-R Al|Al-20.5 at.% Mn 100 50 5.15 

MAl75-R Al|Al-20.5 at.% Mn 100 75 4.9 

MAl100-R Al|Al-20.5 at.% Mn 100 100 4.75 

MCr20 Cr|Al-20.5 at.% Mn - 20 0.96 

MCr50 Cr|Al-20.5 at.% Mn - 50 2.65 

MCr75 Cr|Al-20.5 at.% Mn - 75 3.54 

MCr100 Cr|Al-20.5 at.% Mn - 100 2.92 

MCr20-R Cr|Al-20.5 at.% Mn 100 20 8.93 

MCr50-R Cr|Al-20.5 at.% Mn 100 50 12.26 

MCr75-R Cr|Al-20.5 at.% Mn 100 75 13.62 

MCr100-R Cr|Al-20.5 at.% Mn 100 100 12.18 

 

Table 4.4 Material properties used in the FEM model.  

Material E (GPa) ν σY (MPa) σf (MPa) 

PI 2.5 0.34 69 - 

Al-20.5 at.% Mn 103.6 0.32 - 321.7 

Al 70.2 0.345 225.4 - 

Cr 279 0.21 - 1618.2 
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Figure 4.1 Evolution of electrical resistance change (defined as (R-R0)/R0, where R0 is the initial 

electrical resistance of the film) of a monolithic Al-Mn (sample M) as a function of strain. The 

arrow indicates critical strain εc. 

 

 

Figure 4.2 Representative true stress-strain curve of sample M. The arrow indicates critical strain 

εc. 
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Figure 4.3 Schematic illustration of a bilayered rough sample with cohesive zones. 
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Figure 4.4 J-integrals of flat samples (M, M-R, MAl20) and rough samples (MAl20-R, MCr20 

and MCr20-R).  
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Figure 4.5 Equivalent stress (MPa) distributions of the (a) MAl20 and (b) MCr20 samples.  
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Figure 4.6 Plastic equivalent strain distributions of the (a) MAl20 and (b) MCr20 samples.  
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Figure 4.7 Plastic strain energy densities (N/mm
2
) of the three rough samples (a) MAl20-R and 

(b) MCr20-R. 
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Figure 4.8 Dependence of the J-integrals on the buffer layer thicknesses. 
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Figure 4.9 Elastic strain energy densities (N/mm
2
) of the rough samples with Cr buffer layers (a) 

MCr20-R, (b) MCr50-R, (c) MCr75-R and (d) MCr100-R. 
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Figure 4.9 (continued). 
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CHAPTER 5: EFFECTS OF TEMPERATURE, MOISTURE AND MODE-MIXITY ON 

COPPER LEADFRAME/EPOXY MOLDING COMPOUND INTERFACIAL 

FRACTURE TOUGHNESS 

 

5.1 Introduction  

 There have been several studies addressing the adhesion between Cu and EMC. Wong et 

al. (2006) used an atomic force microscope to characterize nano-scale adhesion forces in the 

Cu/SAM/EMC system. Fan et al. (2005) used a series of button shear tests along with the FEM 

to evaluate the interfacial adhesion between the EMC and Cu. Weidong et al. (2003) performed 

standard tensile tests for determining the interfacial fracture toughness of Cu/epoxy, while 

monitoring the crack length. They also performed fatigue tests to study interfacial delamination, 

followed by fatigue crack propagation. Chan et al. (2009) used Fourier transform infrared 

multiple internal reflection technique to detect moisture at the epoxy/Cu interface.  

 In this chapter, based on experiments and numerical simulations, a fast, simple and 

comprehensive methodology is proposed to investigate the interfacial delamination propagation 

and characterize the fracture toughness of the interface between Cu leadframe and EMC. In 

fracture mechanics’ energy criterion approach, the crack propagates when the strain ERR G, 

which is the driving force for the crack propagation, is equal to its critical value Gc, known as 

interfacial fracture toughness. The values of Gc were calculated by the FE simulations. 

Temperature, moisture and mode-mixity effects on the leadframe/EMC adhesion (i.e. interfacial 

fracture toughness) were then investigated.  



www.manaraa.com

89 

 

 Although analytical expressions for the total ERR are available for some simple 

interfacial crack problems (Hutchinson et al. 1991), they involve considerable mathematical 

complexity. For complicated geometries, or loading conditions, analytical expressions may be 

unavailable and need to be solved numerically. Fortunately, the total ERR can be obtained using 

FE-based techniques, such as VCCT, VCE, J-integral, CZM, etc. Among these methods, only 

VCCT and CZM provide information about the mode-mixity, giving components of the ERR. 

Since VCCT has been successfully used to obtain both the total ERR and the mode-mixity for an 

interface crack, within the context of LEFM (to be discussed later), this work focuses on the 

VCCT and uses other methods as references. 

5.2 Experimental Procedure  

5.2.1 Sample Preparation 

 The samples were made from Cu leadframe and EMC. Various raw material ingredients 

were added to an EMC in order to meet the requirements of reliability, physical properties and 

moldability. The typical ingredients were phenolic resins, epoxy resins, fused silica as filler, 

coupling agents, curing promoter, and a release agent, all of which influence the adhesion 

strength and moldability of the resulting product. These raw materials were mixed and kneaded 

under heat into a homogeneous mixture in a kneader or a roll mixer. Generally, the materials 

were cooled, while kneaded into a sheet, and then pulverized. The powder material was 

pelletized into pellets, which were used in the transfer molding step. Commercial EMC pellets 

were provided by the vendors and kept in the refrigerator at freezing temperature (below -10 °C) 

to avoid undesired chemical changes, or contamination. The composition of the EMC 

investigated in this chapter is shown in Table 5.1. A leadframe is a thin layer of metal that 

connects the wiring from tiny electrical terminals on the semiconductor surface to the large-scale 
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circuitry in electrical devices and circuit boards. The leadframe used in this study is a Cu-based 

alloy with the chemical composition listed in Table 5.2.  

 Transfer molding is normally the preferred method for encapsulating or packaging a 

semiconductor chip with an EMC. It is generally a fast, consistent manufacturing technique that 

results in high-quality parts. This relatively simple process can be simply automated, which 

makes it a suitable choice for a lean manufacturing line (Komori et al. 2009). The transfer 

molding process used for the bi-material samples was similar to that for the plastic encapsulated 

microcircuits including the following steps:  

 + Set the leadframe (substrate) connected to the semiconductor chip into the cavities of a 

heated mold;  

 + Set the molding compound tablet into the pot of the molding machine;  

 + Close the mold die tightly and, melt the molding compound under mold temperature 

conditions of 170-180 °C, and pour it into the mold under pressure;  

 + After applying pressure for 45-90 seconds, when the molding compound has been fully 

cured, open the mold and release the molded parts. This completes the encapsulation process.  

To fabricate the bi-material samples, leadframe plates were machined into 48×10×0.4 mm
3
 strips 

and molded. After the transfer molding, the samples were placed in an environmental chamber 

for the post-mold curing at 175 °C for 6 hours to complete the polymerization process of the 

EMC. 

 In order to get the interfacial fracture toughness of the bi-material samples, a highly 

precise testing device is required. A computer-controlled Instron 5848 micro-tester was used for 

this purpose. 
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5.2.2 Four-Point Bending Delamination Tests 

 The critical forces, which were obtained from the 4PB experiments, were used to obtain 

the critical ERRs Gc (i.e. interfacial fracture toughness) of the interface between Cu leadframe 

and EMC. They were determined by the FEM simulations using the three mentioned methods: 

VCCT, VCE and J-integral. The verification of simulations was performed using an analytical 

solution (eq. (5.6)). Based on the critical ERRs obtained from different specimens tested at 

different temperatures, the temperature dependence of the interfacial fracture toughness was 

investigated. 

 The upper EMC layer of the sample was notched with a diamond blade to get the depth 

of the notch, approximately 80% of the EMC thickness. Fig. 5.1 shows the 4PB test setup, and 

Fig. 5.2 shows the sample before and after the test. The distance between the two loading pins 

was fixed at c = 20 mm, and the distance between the two supports was fixed at 2c = 40 mm. 

Noted that the 4PB delamination test can be performed in one, or two steps, including pre-

cracking. Here, the single step approach was used, in which the whole fracture test is performed 

in a single step, without pre-cracking. In (Shirangi et al. 2008), it was shown that the critical 

forces are almost the same either with, or without pre-cracking.  

 Samples were loaded monotonically under displacement-controlled rate of 1 mm/min at 

room temperature. Fig. 5.3 shows a typical load-displacement curve of the 4PB fracture test. The 

slope of the linear part of the curve corresponds to the stiffness of the whole structure. The peak 

force represents the required force for fracture of the upper layer (EMC) through the notch, and 

does not provide any information about the interface fracture toughness. The vertical part of the 

curve shows that the notch has been broken down, and the interface has been reached. 

Afterwards, the crack advanced along the interface. This constant force during crack propagation 
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represents the critical force required to propagate the crack. Its constant value suggests that the 

critical ERR using 4PB fracture test does not depend on the crack length.   

5.2.3 Four-Point Bending End-Notched Flexure Tests 

 In order to propose a comprehensive methodology for interfacial fracture toughness 

characterization, this section focuses on the mode II fracture. Since the interfacial fracture 

toughness is strongly mode-dependent, the 4ENF test was used instead of the 4PB. Another 

reason of choosing 4ENF test is that in comparison with the conventional three-point bending 

end-notched flexure test, the 4ENF test has a more stable crack growth, making it, in this work, a 

better tool to analyze the effects of moisture on the interfacial fracture toughness of bi-materials. 

 Fig. 5.4 shows the test set-up of the 4ENF for the determination of the resistance to 

delamination (critical ERR, or interfacial fracture toughness). Similar to the 4PB, LEFM was 

assumed to hold true for the 4ENF with the loading rate of 1 mm/min. The same samples were 

used, but after molding, they were kept for 6 hours in the heat chamber at 175 °C to complete the 

EMC polymerization process. Moreover, instead of notching the upper layer (EMC), in the 

4ENF samples, the pre-crack at the interface was made by a sharp steel blade. The testing 

machine was Instron 5848 micro-tester. The distance between the two loading pins was fixed at 

40 mm, and the distance between the two supports was fixed at 20 mm. Samples were loaded 

monotonically under displacement-controlled rate of 1 mm/min at room temperature. 

 Fig. 5.5 shows the force – displacement curve of the 4ENF test. The slope of the linear 

part of the curve (A-B) corresponds to the stiffness of the whole structure. The force at point B 

represents the required force (critical force) for the interfacial delamination. This force was used 

to determine the interfacial fracture toughness, Gc, in the simulation. From point B to C the crack 
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propagates, until it stops at point C. Afterwards, the load increases linearly again, and the slope 

represents the stiffness of the EMC only. 

5.3 Finite Element Simulations 

 In this study, three FEM-based methods were implemented with the commercial general 

purpose FE software package, Ansys, to calculate ERRs of fractures. The three methods include 

VCCT (the main focus), VCE, and the J-integral. A major issue in fracture mechanics 

simulations is the large degree of freedom of the FE model. It is well known that a three 

dimensional FE model becomes very computationally expensive to implement, even with the 

minimal number of elements across the thicknesses, which in turn causes a very large aspect 

ratio in the simulation model. This chapter presents an effort to develop a simpler, low-cost two 

dimensional model to evaluate the system. With the test conformation, the problem can be 

assumed to be plane strain. The very good agreement between FE analysis results and the 

analytical solution confirmed this assumption (discussed in section 5.4, Fig. 5.9). 

 In order to get the most accurate result of the ERRs, the convergence analysis was used to 

find the optimal mesh. Fig. 5.6 shows the mesh-convergence analysis on three meshing 

parameters including the radius of first row elements at the crack tip, the number of elements in 

circumferential direction and the defined maximum element size. 

5.3.1 Four-Point Bending Delamination Simulations 

 The critical forces, which were achieved from the 4PB experiments, were used to obtain 

the critical ERRs Gc (i.e. interfacial fracture toughness) of the interface between Cu leadframe 

and EMC. They were determined by the FEM simulations using the three mentioned methods: 

VCCT, VCE and J-integral. The verification of simulations was performed using an analytical 

solution (eq. (5.1)). In order to find the most accurate result for Gc, the convergence analysis was 
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used to find the optimal mesh. Based on the critical ERRs obtained from different specimens 

tested at different temperatures, the temperature dependence of the interfacial fracture toughness 

was investigated. 

 The simulation model of the test is shown in Fig. 5.7 (equivalent stress distribution in 

deformed shape of the 4PB model with optimal mesh, using singularity elements at the crack 

tip). Taking advantage of the symmetry, only half of the 4PB specimen is modelled. To prevent 

rigid body translation, the x-displacement of the points, where the two loads P/2 are applied, is 

fixed. The analysis was performed in plane strain. The optimal mesh was obtained by performing 

the convergence analysis. The two types of meshing – using singularity elements at the crack tip 

and using mesh refinement around the crack tip, were implemented. There was not much 

difference between the two mesh types with respect to the obtained Gc values. Moreover, the 

computational time in the latter type is three times longer than the first one. Therefore, the 

former type was chosen. The mechanical properties of the bi-material, obtained by uniaxial 

tensile tests, are: E = 135 GPa and ν = 0.34 for Cu leadframe, and E = 30 GPa and ν = 0.24 for 

EMC at room temperature. 

5.3.2 Four-Point Bending End-Notched Flexure Simulations 

 In order to find the most accurate result of the ERR, the convergence analysis was also 

used to find the optimal mesh in the same manner as for the 4PB specimens. The VCCT was 

applied to obtain the critical ERR for the 4ENF specimens, since it can give the ERR for each 

individual fracture mode. In this simulation, contact elements and target elements are required at 

the pre-crack surface to prevent elements penetration. Besides, the geometry non-linearity was 

also considered to obtain a better result. As mentioned in the 4PB case, two types of meshing, 

which are using singularity elements at the crack tip and using mesh refinement around the crack 
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tip, were used, and the former type was proven to be better. The simulation model of the test is 

shown in Fig. 5.8.    

5.4 Results and Discussion 

5.4.1 Interfacial Fracture Toughness of the Four-Point Bending Specimen 

 The ERR of 4PB delamination test exhibits steady-state characteristics when the 

interfacial crack reaches a minimum length, and does not exceed the distance between the inner 

supports (in this case, c = 20 mm). This value of Gc, is the difference between the strain energy 

in the un-cracked and cracked beams. Applying the beam theory and assuming LEFM, G can be 

calculated as in (Charalambides et al. 1989): 
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In equation (5.1), the initial cracks are symmetric, and both cracks propagate simultaneously at 

the same load. The equation provides the interfacial fracture toughness, Gc, when the load, P, is 

substituted with the critical fracture load, Pc. 

 Fig. 5.9 shows the results of G (J/m
2
) calculated by the four methods: VCCT, VCE, J-

integral, and the analytical solution of equation (5.1), under the average critical load Pc (average 

of 5 tests) of 5.56 N (25 °C test temperature, 1 mm/min loading rate). These ERRs are at the 

average mode-mixity (see section 5.4.5) of 15.46°. It can be seen that Gc values calculated with 

the four methods are nearly the same. With a very good agreement with the other methods, and 

with the capability of finding the components of G, corresponding to the mode I and mode II 
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separately (thus the capability of finding the mode-mixity), VCCT was chosen as the main 

method and the others were used for reference. 

 Note that in this problem, the LEFM was assumed to hold true. First, the reaction forces 

and applied displacement, up to the delamination point, were always linear. Second, in Fig. 5.2, 

plastic deformation could be expected after the crack started to propagate. However, there is no 

significant plastic deformation at the moment. In other words, the plastic zone was much smaller 

than the SIF dominated field. (Volinsky et al. 1998) proposed the relationship between the ERR 

and the plastic zone size as the following: 

   
   
 

 
    

 

 
     ,    (5.2) 

where c is the plastic zone size, b is Burgers vector, E is the Young’s modulus, σys is the yield 

stress of, in this case, the Cu layer. With the value of G = 17.78 J/m
2
 (25 °C test temperature, 1 

mm/min loading rate, Fig. 5.9), the plastic zone size was estimated as 5.52*10
-3

 mm which is 

much smaller than the Cu layer thickness of 0.25 mm. Last, the 4PB tests were performed at a 

relatively high displacement rate of 1 mm/min, and crack propagation happened within a couple 

of seconds after starting the test, and took normally less than one second until the crack reached 

the supports. Therefore, the visco-elastic effects due to the stress relaxation within such short 

crack propagation time were found to be almost negligible. The above reasons mean that the 

LEFM can be applied for these tests and the visco-elastic deformation of the EMC layer can be 

neglected.  

5.4.2 Temperature Effects on the Interfacial Fracture Toughness  

 Temperature dependence of the interfacial fracture toughness of the Cu leadframe/EMC 

interface was investigated. After keeping all the 4PB samples for 6 hours in a heat chamber at 

175 °C to complete the polymerization process of the EMC, they were tested at various 
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temperatures of 25 °C, 85 °C, 130 °C, 175 °C, 210 °C, and 250 °C (5 samples for each test 

temperature). The samples were loaded monotonically under displacement-controlled rate of 1 

mm/min. Since the Young's modulus of EMC is temperature dependent, it was determined using 

uniaxial tensile tests at various temperatures (Table 5.3), identical to the fracture experiments 

temperature.  

 When testing at elevated temperatures and time scales, where visco-elastic deformation 

may affect the interfacial fracture toughness, LEFM is believed to be still valid, since the load-

displacement curves are all linear, up to the point of delamination propagation. In this case, any 

significant visco-elastic deformation that may occur in a sample is assumed to occur on a very 

local scale at the crack tip region as a part of the crack growth process. Moreover, the EMC used 

in this work is cross-linked, which means, according to (Swallowe 1999), that the viscoelasticity 

effects can be neglected. 

 Fig. 5.10 shows the fracture toughness of the Cu leadframe/EMC interface, which was 

calculated by VCCT, as a function of the testing temperature. The results from 5 samples, along 

with the average value at each temperature, are shown (17.78 J/m
2 

at
  
25 °C, 23.99 J/m

2 
at 85 °C, 

27.8 J/m
2
 at 130 °C, 7.21 J/m

2  
at

 
175 °C, 5.02 J/m

2  
at 210 °C, and 4.71 J/m

2  
at 250 °C). Gc was 

also calculated by using other approaches (i.e. VCE, J-integral and analytical formula) for 

comparison, and all of them give nearly the same values.  

 It can be seen that after an initial increase at the early stages of the temperature rise, the 

interfacial fracture toughness significantly decreases with the test temperature. The glass 

transition temperature of the EMC is about 130 °C. Therefore, the interfacial fracture toughness 

undergoes a significant change around the glass transition temperature. 
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5.4.3 Interfacial Fracture Toughness of the Four-Point Bending End-Notched Flexure 

Specimen 

 Until now, to the best of my knowledge, there is no acceptable analytical formula for the 

G calculation of 4ENF specimens, made of two different materials. Instead, there is only the 

formula for calculating the GII (G at mode II), which can be found elsewhere (Davies et al. 2005; 

Shindo et al. 2008); and there is no formula for the mode I portion of the G. In the Fig. 5.13, it 

also can be seen that the 4ENF is close to the mode II facture, but actually it is at the mix-mode 

fracture. For that reason, the interfacial fracture toughness for the 4ENF delamination tests needs 

to be obtained through numerical computation using FE-based techniques. Components of the 

critical ERR, GIc, GIIc, and the total critical ERR, Gc, were obtained by VCCT, based on the pre-

crack lengths and the critical forces from 5 tests. Under the average critical load, Pc, of 229.9 N 

and the average pre-crack length of 11.72 mm, GIc, GIIc and Gc of 3.64 J/m
2
, 196.31 J/m

2
 and 

198.16 J/m
2
, were obtained, respectively. This ERR value corresponds with the average mode-

mixity angle of 82.27° (Fig. 5.13). 

5.4.4 Moisture Effects on the Interfacial Fracture Toughness 

 The effect of moisture on the interfacial fracture toughness of Cu leadframe/EMC was 

investigated. All the fracture tests were performed at room temperature and the load rate of 1 

mm/min. Before the tests, except for the samples tested in dry condition, all the other ones were 

placed into a moisture chamber for one week, 2 weeks, 3 weeks, 4 weeks and 5 weeks (5 

samples for each category) at 85 °C and 85% relative humidity. Only the EMC layer absorbs 

moisture. An electronic balance scale was used for weighing the samples to calculate the amount 

of moisture absorbed by the EMC layer. The weight gain of the samples at the time of testing can 

be determined as: 
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weight gain (%) %100
0

0 



M

MM t ,    (5.3) 

where Mt is the weight of the sample at time t (in weeks) and M0 is the dry weight before the 

moisture preconditioning. Fig. 5.11 shows the average mass of the moisture absorbed with 

respect to time. It can be recognized that the moisture absorption reached saturation at around 4 

weeks at the weight gain of 0.22%.  

 From Fig. 5.12, which shows the critical ERRs of the moisture preconditioned samples, 

calculated by VCCT, based on experimental critical forces, the effect of moisture diffusion in 

humid chamber on the interfacial fracture toughness of bi-materials Cu leadframe/EMC can be 

seen. The initial interfacial fracture toughness of 198.16 J/m
2
 in dry condition reduced 

significantly to 137.1 J/m
2
 after one week of moisture absorption, and then continued to decrease 

slightly with moisture exposure time. Finally, the interfacial fracture toughness hardly changed 

when the moisture absorption of the specimens was around 20% (108.89 J/m
2
 at 3 weeks, 106.59 

J/m
2
 at 4 weeks, 107.53 J/m

2
 at 5 weeks and 100.43 J/m

2
 at 6 weeks).   

 The effect of moisture on the interfacial fracture toughness is strong enough to put it into 

consideration when the device is exposed to humid environment in service. However, once 

exposed, the moisture effect is minimal after a certain time of around three weeks at 85 °C and 

85% relative humidity. Interfacial fracture toughness decreases by a factor of two in 6 weeks of 

moisture exposure, compared to the dry conditions. 

5.4.5 Mode-Mixity Effects on the Interfacial Fracture Toughness  

 The effect of mode-mixity ψ (also called mode angle, or phase angle), which is defined as

I

II

G

G
2tan , on the interfacial fracture toughness has been widely investigated. For example, 

Liechti et al. (1991) proposed a method to find the range of in-plane fracture mode-mixity and 
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contact zone that can be obtained from bi-material samples. In that work, the crack opening 

displacement was measured and the values obtained with FE solutions were matched to get the 

mixed mode fracture parameters. Agrawal et al. (2006) have shown a method to obtain mode-

mixity for a bimaterial interface crack using VCCT with the 4PB model. This section extends the 

work by using 4PB tests together with 4ENF tests to characterize the effect of mode-mixity on 

the interfacial fracture toughness of Cu leadframe/EMC. 

 It should be noted that when using the VCCT method to determine the components of the 

ERR, the virtual extension of the crack is determined by the length of the elements around the 

crack tip. In order to use the VCCT method correctly, it is required that the length of all elements 

across the interface at the crack tip are equal. However, a prominent problem of bi-material 

interface cracks is that: when the length of these elements in the FE meshing is changed, then the 

values of G components, GI, GII and GIII, also change, although the total G remains constant. This 

problem has been observed by many researchers (Agrawal et al. 2006; Agrawal et al. 2007; Oh 

2004; Sun et al. 1997). This makes the calculation of the mode-mixity difficult, because it seems 

that the mode-mixity depends on the mesh size. Moreover, for a bimaterial interface crack, the 

solutions of the crack opening with oscillatory stress and displacement fields are reference length 

dependent and are given by the equations (5.4) and (5.5) by Rice (1988) and Hutchinson et al. 

(1991): 

         
       

    
 
 

 
 
  

,      (5.4) 
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where 
 

  
 

 

 
 
 

      
 

 

      
  and l is the reference length. A typical way of solving the above issues is 

that, for bimaterial interfaces, the mode-mixity is specified at a particular distance ahead of the 
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crack tip, which is normally referred as reference length or characteristic distance. Agrawal et al. 

(2006) showed that several, apparently different, methods suggested in literature for obtaining 

mode-mixity based on the SIFs are indeed identical. As suggested by Beuth (1996), a stable 

mode-mixity can be defined by introducing the reference length parameter. It should be noted 

that this reference length is only a mathematical quantity with no physical meaning and is only 

used to enable a consistent way of reporting the mode-mixity values. It must be also noted that 

this problem is dependent on many factors, such as geometry of the model, element types, and 

more importantly, mismatch in the mechanical properties of the two dissimilar materials. 

Moreover, the variation in the mode-mixity is not a major problem due to the relatively moderate 

β values (where β is a mechanical properties parameter proposed by Rice (1988)). Therefore, it 

can be concluded that if the element size is small enough to get a convergence of the total G 

value, the shift of the mode-mixity due to the element size is almost equal for all problems 

provided that the same element size is used. In other words, the results from VCCT are 

consistent, even with an existing shift, whether positive or negative, in the calculated mode-

mixity. 

 Fig. 5.13 shows the critical ERR Gc, calculated for the two test geometries (4PB and 

4ENF) of the leadframe/EMC, as a function of the phase angle. From the 4PB delamination test 

at room temperature and the loading rate of 1 mm/min, a mean fracture toughness of 17.78 J/m
2
 

was obtained. The average interfacial fracture toughness found in the 4ENF test for the same 

conditions was much higher, at 198.16 J/m
2
. This phenomenon can be explained by the mode-

mixity angle. Interfacial fracture toughness strongly depends on the mode-mixity, as it increases 

with the contribution of the mode II fracture. In the 4PB delamination test, the average phase 

angle is 15.46° (with GI = 16.52 J/m
2
, GII = 1.26 J/m

2
 and G = 17.78 J/m

2
), which means that the 
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fracture is close to the mode I. In the 4ENF test, the average phase angle is 82.27°, which means 

that the fracture is mostly mode II. In practice, the phase angle involves many delamination 

phenomena, among which loading is a significant impact factor (Evans et al. 1995; Gan et al. 

2005; Högberg et al. 2006; Hutchinson et al. 1991). Let's take a look at the formula (2.16) in 

chapter 2, the phase angle depends on the components of the loading, which depends on the 

configuration of the test setup (e.g. the distance between the supports and that between the 

loading positions); and the chosen crack size, which is in this case the radius of 1
st
 row elements 

at the crack tip.  

 Several relationships have been proposed to characterize interfacial fracture toughness as 

a function of the phase angle (Hutchinson et al. 1991). There are results in the literature, both 

experimental and theoretical, that exhibit similar behaviour, such as (Liechti et al. 1991) and 

(Jensen et al. 1993). The most realistic description of the functional dependence of the interfacial 

toughness on the mode-mixity was proposed by Hutchinson et al. (1991): 

))]1((tan1[ 2

0   cc GG ,     (5.6) 

where Gc0 is the mode I interfacial toughness with respect to ψ = 0 and λ is an adjustable 

parameter. By fitting the results of this work, the interfacial fracture toughness and the mode-

mixity relationship for the bi-materials Cu lead-frame/EMC was achieved (Fig. 5.13). In this 

case Gc0 = 16.78 J/m
2
 and λ = 0.111, yielding the following Gc phase angle dependence: 

)]889.0(tan1[78.16 2 cG  .    (5.7) 

5.5 Conclusions  

 This chapter was to study the interface delamination propagation and then characterize 

the fracture toughness of the interface between Cu leadframe and EMC under monotonic loading 

by experimental data and numerical simulations. Fracture mechanics was used as a theory guide. 
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Within the framework, the energy approach was applied in which the ERR is the key parameter. 

Two dimensional simulations with the methods, such as VCCT, VCE and J-integral have been 

proven accurate and computationally cheap to find the ERRs and, together with critical force 

obtained by experiments (4PB and 4ENF tests), the interfacial fracture toughness of a bi-material 

structure was calculated. 

 This work shows a systematic investigation and characterization of the interfacial fracture 

toughness of the bi-material Cu leadframe/EMC, including the testing temperature dependence 

of the interfacial fracture toughness, the moisture diffusion effect on the fracture toughness and 

the relationship between the fracture toughness and the mode-mixity. First, after an initial 

increase at the early stages of the temperature rise, the interfacial fracture toughness significantly 

decreases with the test temperature. Because of the glass transition temperature of the EMC is 

about 130 °C, the interfacial fracture toughness suffers a significant change around this 

temperature. Second, the effect of moisture on the interfacial fracture toughness is strong enough 

to put it into consideration when the device is in service in a humid environment. However, the 

moisture effect is minimal after a certain time of around three weeks at 85 °C and 85% relative 

humidity and the interfacial fracture toughness decreases by a factor of two in 6 weeks of 

moisture exposure compared to the dry conditions. Last, by fitting, the interfacial fracture 

toughness and the mode-mixity relationship for the bimaterials Cu leadframe/EMC was 

achieved. 

 The results of this chapter can be generally applied to predict the delamination, as well as 

to characterize the interfacial fracture toughness between two layers of dissimilar materials under 

different environmental conditions.  
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5.6 Tables and Figures 

Table 5.1 Composition of the EMC. Credit (Tran et al. 2014) 

EMC components Composition 
Epoxy resin Multi Aromatic + Biphenyl 

Hardener Low water absorption 
Flame retardant system No FR 

Filler content 
88 / 80 Weight / 

volume, % 
Filler shape All spherical (average 50 µm diameter) 
Spiral flow 1143 mm 

Gelation time (175 °C) 30 sec 
Flexural Modulus 2450 kgf/mm

2 
Flexural strength 15 kgf/mm

2 

  

Table 5.2 Composition of the Cu leadframe. Credit (Tran et al. 2014) 

Cu Fe P Pb Zn 

Balance 2.1-2.6wt.% 0.015wt.% 0.03wt.% 0.05-0.2wt.% 

 

Table 5.3 Young’s modulus of EMC at varying temperature. Credit (Tran et al. 2014) 

Temperature (°C) Young's modulus of EMC (GPa) 

25 30 

85 25 

130 2 

175 2 

210 1 

250 1 
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Figure 5.1 4PB delamination test set-up. Credit (Tran et al. 2014). 

 

 

Figure 5.2 4PB delamination specimen before and after the test. Credit (Tran et al. 2014). 

 

10 mm 

 
Untested sample 

 

Tested sample 
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Figure 5.3 The force – displacement curve of a 4PB delamination test at room temperature. 

Credit (Tran et al. 2014). 

 

 

 

Figure 5.4 4ENF set-up. Credit (Tran et al. 2014). 

 

Critical force, Pc 
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Figure 5.5 The force – displacement graph of the 4ENF delamination test at room temperature. 

Credit (Tran et al. 2014). 

 

 

(a) Optimal parameter is a/85. 

Figure 5.6 Mesh-convergence analysis on three meshing parameters including (a) the radius of 

first row elements at the crack tip, (b) the number of elements in circumferential direction and (c) 

the defined maximum element size. a is the crack length.  

 

Pc 
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(b) Optimal parameter is 10. 

 

 

(c) Optimal parameter is a/22. 

Figure 5.6 (continued).  
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Figure 5.7 Equivalent stress distribution in deformed shape of the 4PB model with optimal mesh, 

using singularity elements at the crack tip. Credit (Tran et al. 2014). 
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Figure 5.8 Deformation shape of the 4ENF model with optimal mesh using singularity elements 

at the crack tip. Credit (Tran et al. 2014). 

 

 

Figure 5.9 Critical ERRs calculated by the four methods. Credit (Tran et al. 2014). 
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Figure 5.10 Gc calculated by VCCT using experimental critical force at different temperatures. 

Credit (Tran et al. 2014). 

 

 

Figure 5.11 The average moisture mass absorbed by EMC. Credit (Tran et al. 2014). 
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Figure 5.12 Gc calculated by VCCT using experimental critical forces of the moisture absorbed 

specimens. Credit (Tran et al. 2014). 
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Figure 5.13 Interfacial fracture toughness as a function of the phase angle for the 4PB and 4ENF 

tests, along with the empirical fit of equation (5.7). Credit (Tran et al. 2014). 
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK  

 

6.1 Conclusions 

6.1.1 Al-Mn Alloy Thin Films Coated on Polyimide Substrates Structures  

Mechanical properties of monolithic and multilayered Al-Mn thin films coated on PI 

substrates were studied by tensile testing and FEA with the following conclusions.  

a. Fracture Behavior of Monolithic Samples with Various Mn Concentrations 

Among the monolithic films, the amorphous Al-Mn (Al-20.5 at.% Mn, sample M20) 

possesses the highest fracture toughness, but limited ductility compared to its crystalline 

counterparts (Al-5.2 at.% Mn and Al-11.5 at.% Mn). 

b. Optimizing Ductility and Fracture Properties Using Multilayer Schemes 

To improve the stretchability of the amorphous Al-Mn (Al-20.5 at.% Mn, sample M20) 

system without compromising the fracture toughness, bilayered and trilayered films were 

designed by adding Cu buffer layers to the system. It was found that the bilayered structure with 

50 nm Cu buffer layer (Cu|Al-20.5 at.% Mn, sample B1) improves the ductility of amorphous 

Al-Mn by more than ten times while the trilayered structure (Cu|Al-20.5 at.% Mn|Cu, sample S) 

optimizes both ductility and fracture toughness. Analytical modeling and FEA show that in the 

trilayered structure, the topmost Cu layer retards crack initiation, while the inner Cu layer 

dissipates strain energy and improves film/PI adhesion. In this case, the elongation was enhanced 

more than ten times and the interfacial fracture toughness twenty four times with a limited 

sacrifice of fracture toughness (less than 18%).  
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c. Effects of the Buffer Layer Material Properties on the Interface Adhesion  

 The interface adhesion of the structure was improved by adding a buffer layer (Al or Cr 

with variety of thicknesses) in between and roughening the substrates. Among the flat substrate 

samples with a 20 nm buffer layer, the one with Al buffer layer (MAl20) has an interfacial 

adhesion of three times stronger than that with Cr (MCr20). It is postulated that in order to 

improve the interface adhesion of the system (without roughing the PI), a thin (e.g. 20 nm) 

ductile buffer layer (e.g. Al) of smaller yield strength (than the fracture strength of the 

amorphous film) should be added in between the film and the substrate. 

d. Effects of the Substrate Roughness on the Interface Adhesion  

Among the rough substrate samples, the interfacial adhesion of MCr20-R is nine times 

stronger than the flat one (MCr20). Moreover, in the comparison with other rough counterparts, 

i.e. M-R and MAl20-R, it is about 5 and 1.5 times stronger, respectively. Hence, it can be 

predicted that with the condition of the rough PI substrate, higher adhesion of an amorphous 

brittle film/PI interface can be obtained by having a 20 nm buffer layer with higher strength and 

stiffness (than the brittle film). 

e. Effects of the Buffer Layer Thickness on the Interface Adhesion  

 When increasing the buffer layer thickness, while MAlx and MAlx-R (x = 20, 50, 75 and 

100) samples show their independence on buffer layer thicknesses, the MCrx and MCrx-R 

samples reach their J-integral maximums at x = 75 nm. Particularly, MCr75-R improves the 

interface adhesion of the base sample M to almost 20 times and is therefore the most beneficial 

case. That is the result of the fact that the Cr buffer layer reaches its highest amount of strain 

energy dissipation ability at the thickness of 75 nm maximizing the ability of preserving the 

ductility and then delaying the final failure of the whole system. 
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6.1.2 Copper Leadframe/Epoxy Molding Compound Structures  

 The interface delamination propagation and the fracture toughness of the interface 

between Cu leadframe and EMC under monotonic loading were studied by experiments and 

numerical simulations. Moreover, a systematic investigation and characterization of the 

interfacial fracture toughness of the bi-material Cu leadframe/EMC, including the testing 

temperature dependence of the interfacial fracture toughness, the moisture diffusion effect on the 

fracture toughness and the relationship between the fracture toughness and the mode-mixity was 

carried out. 

a. Computational Methods in Fracture Mechanics  

 Within the framework of fracture mechanics, the energy approach was applied in which 

the ERR is the key parameter. Two dimensional simulations with the methods, such as VCCT, 

VCE and J-integral have been proven accurate and computationally cheap to find the ERRs. 

Together with critical force obtained by experiments (4PB and 4ENF tests), the interfacial 

fracture toughness of the bimaterial structure was calculated. 

b. Temperature effects on the interfacial fracture toughness  

 After an initial increase at the early stages of the temperature rise, the interfacial fracture 

toughness significantly decreases with the test temperature. Because of the glass transition 

temperature of the EMC is about 130 °C, the interfacial fracture toughness suffers a significant 

change around this temperature.  
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c. Moisture Effects on the Interfacial Fracture Toughness  

 The effect of moisture on the interfacial fracture toughness is strong enough to put it into 

consideration when the device is in service in a humid environment. However, the moisture 

effect is minimal after a certain time of around three weeks at 85 °C and 85% relative humidity 

and the interfacial fracture toughness decreases by a factor of two in 6 weeks of moisture 

exposure comparing to the dry conditions. The interfacial fracture toughness hardly changed 

when the system was exposed to moisture from 3 weeks and more. 

d. Mode-mixity Effects on the Interfacial Fracture Toughness  

 By fitting the results with an analytical formula, the interfacial fracture toughness and the 

mode-mixity relationship for the bimaterial Cu leadframe/EMC was achieved. 

 The results of this chapter can be generally applied to predict the delamination, as well as 

to characterize the interfacial fracture toughness between two layers of dissimilar materials under 

different environmental conditions.  

6.2 Future Work  

 In chapter 3, the bilayered and trilayered samples were buffered with Cu layers due to the 

relatively high ductility and tensile strength of Cu. Specifically, some studies have shown that if 

the strength of the well-adhered crystalline layer is similar or higher than that of the amorphous 

counterpart, the amorphous layer will be constrained by the crystalline one, making the whole 

multilayered film fail at a larger strain (Chen et al. 2011b; Li et al. 2007b; Nieh et al. 1999). This 

work can be extended to other buffer materials rather than Cu such as Cr, Fe, Ti or metallic 

alloys which show high strength and stiffness as well as good adhesion to the selected polymers. 

 To increase the interface adhesion of amorphous Al-Mn/PI, one of the strategies is 

roughening the PI substrate with 100 nm Ra. Because of the limited time, the effects of the PI 
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roughness were not investigated. This consideration can be done in such a way that the optimum 

roughness patterns with respect to the variation of buffer layer's mechanical properties can be 

systemized. Moreover, the results of chapter 4 is just simulation, therefore the author calls for 

further experimental studies to verify the predictions. 

 Regarding the Cu leadframe/EMC system, mode II fracture toughness should be studied 

in future to get better results. During the 4ENF tests, the effect of friction is significant, when Cu 

and EMC layers slide on each other. As a result, 4ENF tests normally over estimate the 

interfacial fracture toughness. However, due to the lack of data regarding friction coefficient, this 

factor was neglected when investigating the effects of moisture diffusion.  

 This study showed the effects of environmental factors such as testing temperature, 

moisture diffusion and mode-mixity on the interfacial fracture toughness. Nevertheless, 

the moisture condition was restricted to moisture sensitivity level 1 which is the worst case of 

reliability testing in electronics package engineering. Future work can consider different 

moisture sensitivity levels which widen the application of the study.  

 Moreover, the models can be applied to investigate other factors affecting the reliability 

of the electronics packaging systems such as thermal aging, loading rates and fatigue loading 

conditions. The results might fulfill the picture of the delamination in such system under variety 

environmental conditions.  
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APPENDIX A: DEFORMATION OF ALUMINUM–MANGANESE MICROSANDWICH 

STRUCTURE  

 

A.1 Simulation of Aluminum–Manganese Microsandwich Structure Under 

Microindentation 

 In the paper (Mraied et al. 2016b), one-step electrodeposition procedure to synthesize Al-

Mn microsandwichs using a porous polycarbonate membrane template ionic liquid in RT was 

proposed. Together with nano- and micro-indentation experiments, to understand more about the 

deformation behavior of the two microsandwich structures, FE models were utilized with the 

commercial software Ansys Workbench. The geometry properties were averagely taken from the 

experimental data. Specifically, the size of the upper and lower plates is of 70x70x11 μm and the 

pillars have the height of 27.6 μm and the diameter of 5 μm. The distances between the pillars 

are all 10 μm. The indenter was constructed as a sphere of 4 mm diameter and the material of 

Al2O3. The material properties of Al2O3 was taken from literature while Al-9 at.% Mn and Al-26 

at.% Mn are assumed (rule of mixture) to be elastic with the elastic moduli of 81.5 GPa, 103 GPa 

and Poisson’s ratios of 0.301, 0.318, respectively, and the above mentioned mass densities. The 

behaviors of the materials were assumed to be elastic-perfectly plastic with the yield strength of 

863 MPa and 2050 MPa (measured by nanoindentation), respectively. The material properties 

used in the simulations are listed in Table A.1. 

 The two structures were loaded and unloaded with the same force of 0.81 N, which 

corresponds to the experimental loading with the same size.  The fine mesh was created at the 
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contact area between the indenter and the top plates of the micro-pillar structures. Convergence 

analysis was performed to get the most accurate results with the least computational expense. 

The number of elements in the two structures are 92387 for Al-9 at.% Mn and 131185 for Al-26 

at.% Mn.  The FEA results presented in Fig. A.2 show that under the same loading, the Al-9 at.% 

Mn structure experienced a large plastic deformation (Fig. A.2(a)) while the Al-26 at.% Mn 

structure was elastically deformed and mainly on the top face (Fig. A.2(b)). In both crystalline 

and amorphous structures, the maximum equivalent stresses and the maximum shear strains (not 

shown here) occur at the face/core interface, which is in agreement with the pillar delamination 

location observed in experiments (Fig. A.1). Moreover, the absorption energy per unit volume of 

the Al-9 at.% Mn structure was estimated 43.2 MJ/m
3
 which is much higher than that of 

aluminum foams  (e.g. ≈ 4 MJ/m
3
 in reference (Mukai et al. 1999)), aluminum honeycomb foam 

(e.g. ≈ 12 MJ/m
3
 in reference (Ruan et al. 2011)) and new lattice structures (e.g. 1–20 MJ/m

3
 in 

reference (Ruan et al. 2009; Ruan et al. 2011)) under the same range of strains. 
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A.2 Tables and Figures 

Table A.1 Summary of composition and properties of microsandwiches used in FEA. Elastic 

constants were estimated from rule of mixture. Credit (Mraied et al. 2016b). 
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Figure A.1 SEM images of (a) and (b) surface and (c) and (d) cross-section of Al–9 at.% Mn and 

Al–26 at.% Mn microsandwiches after microindentation. Images (e) and (f) are taken from the 

box areas in (c) and (d), respectively. Credit (Mraied et al. 2016b). 
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Figure A.2 FEA predicted (a) and (b) displacement, and (c) and (d) equivalent stress of Al–9 

at.% Mn and Al–26 at.% Mn microsandwiches after microindentation. Credit (Mraied et al. 

2016b). 
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APPENDIX B: ANISOTROPIC MECHANICAL AND GIANT MAGNETO-

IMPEDANCE PROPERTIES OF COBALT-RICH AMORPHOUS RIBBONS 

  

B.1 Mechanical Properties of Co69Fe4Ni1Mo2B12Si12 Amorphous Ribbons 

 A comparative study was performed on the mechanical and giant magneto-impedance 

(GMI) properties in the longitudinal and transverse directions of Co69Fe4Ni1Mo2B12Si12 

amorphous ribbons. Both mechanical and GMI properties were found to be anisotropic. Kerr 

microscopy shows the presence of a stripe-type domain structure with the magnetic easy axis 

parallel to the longitudinal direction. The fracture strength, elastic modulus, and fracture 

toughness in the transverse direction was higher than those in the longitudinal direction. A larger 

GMI response was achieved in the transverse direction at a frequency range where both the 

domain wall motion and spin rotation dominantly contributed to the effective permeability and 

hence the magneto-impedance. The current study paves the way for designing Co-rich 

amorphous ribbons as desirable components in electronics such as magnetic sensors.  

Mechanical properties of the ribbon were obtained from tensile testing using a 

delamination testing system (DTS from National Instruments group) under a constant strain rate 

of 1.67x10
-4

 s
-1

 at room temperature. Two different sample geometries, dog-bone and pre-

cracked rectangle, were used for the tensile testing. Dog-bone samples with 2×20 mm
2
 gauge 

area were used to measure ductility, fracture strength, and elastic modulus. Fracture toughness 

was measured using rectangular samples with 2 mm edge cracks at the middle of the gauge area 

(4×40 mm
2
). Prior to the tensile testing, the pre-cracked samples were gripped with flat clamps 
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on both ends to ensure uniform stress distribution along the width of the specimen. This step is 

critical to prevent buckling that may appear due to the high stress concentration at the crack tip. 

 All results reported here were obtained by averaging from four separate tests. DIC 

method was used to obtain an accurate measurement of the strain. All samples were sprayed with 

fine ink speckles on the surface prior to testing. The movements of these markers were then 

tracked with a high definition camera at a frame rate of ~ 30 FPS. The strain was then calculated 

using a Matlab routine developed by Christoph Eberl et al. at Johns Hopkins University, USA 

(Bing et al. 2009; Verhulp et al. 2004; Wattrisse et al. 2001; Zhou et al. 2013a). Fig. B.1 shows 

the typical stress-strain curves of longitudinal and transverse dog-bone samples with snapshots of 

the transverse sample at different stages of the test. From these tests, the elongation, fracture 

strength and elastic modulus of the longitudinal and transverse samples were measured, as 

plotted in Fig. B.3(a-c). It can be seen that while the two samples exhibit comparable elongation, 

both the fracture strength and elastic modulus is higher in the transverse direction. 

Fig. B.2 shows typical force-displacement curves of longitudinal and transverse pre-

cracked samples, where the location of the pre-crack is marked by the red ellipse on the inserted 

images.  Since the material is brittle in both directions, the fracture toughness of the ribbon was 

determined using linear elastic fracture mechanics. The mode I SIF KIc (fracture toughness) is 

calculated as (Anderson 2005): 

             ,     (B.1) 

where   is the fracture stress and   is the pre-crack length, as shown in Fig. B.3(d). It can be 

seen that both the fracture stress and fracture toughness were higher in the transverse sample 

than the longitudinal one. 
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Mechanical properties of Fe- or Co-based amorphous ferromagnetic materials are 

commonly obtained by compression or hardness tests, while those from tensile tests are few 

(Inoue et al. 1995; Inoue et al. 2003; Kuan et al. 2013; Wada et al. 2002; Wang et al. 2013; 

Wang et al. 2014; Zhou et al. 2013b). From Fig. B.3, in comparison with the longitudinal 

configuration, the transverse configuration has the dominance in almost all the mechanical 

properties namely fracture strength (2,689 MPa and 2,592 MPa) (tensile strength of 

Co68.15Fe4.35Si12.25B15.25 (at%) amorphous microwires was reported from 1,145 to 2,457 MPa 

(Wang et al. 2014)), elastic modulus (177 GPa and 165 GPa) except the comparable elongation 

(1.57% and 1.61%). Moreover, from the fracture strength and elongation data in Fig. B.3, it can 

be clearly seen that the toughness (different from fracture toughness) of the transverse 

configuration is also higher than that of the longitudinal one.  
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B.2 Tables and Figures 

 

 

Figure B.1 Typical stress-strain curves of longitudinal and transverse dog-bone samples. Inset 

images show snapshots of transverse sample at different stages of the test. Credit (Tran et al. 

2016). 
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Figure B.2 Force-displacement curves of a longitudinal and a transverse pre-cracked rectangular 

samples with insets being the images of the sample at the indicated times (the ellipses indicate 

the pre-crack). Credit (Tran et al. 2016). 
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Figure B.3 Mechanical properties of the ribbon in the two configurations. Credit (Tran et al. 

2016). 
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APPENDIX C: ABBREVIATIONS  

  

 Unless otherwise specified, the following abbreviations are used in this dissertation: 

 4ENF  four point-bend end-notched flexure  

 4PB  four point bending  

 APDL  Ansys parametric design language  

 CZM   cohesion zone model  

 DIC   digital image correlation  

 EDS   energy dispersive spectra  

 EMC  epoxy molding compound  

 ERR   energy release rate  

 EPFM   elasto-plastic fracture mechanics  

 FEA   finite element analysis  

 FEM   finite element method  

 GMI  giant magneto-impedance  

 LEFM   linear elastic fracture mechanics  

 PI   polyimide  

 SAD   selected area diffraction  

 SEM   scanning electron microscopy  

 SIF  stress intensity factor  

 TEM  transmission electron microscopy  
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 VCE   virtual crack extension  

 VCCT   virtual crack closure technique   
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APPENDIX D: COPYRIGHT PERMISSIONS  

  

 Excerpts from the license agreements for use of materials from previously published 

articles are listed as the followings. The first copyright permission is for figures 2.8, 2.9, 2.10, 

2.11, 2.12 and 2.14. The second copyright permission is for tables 5.1, 5.2, 5.3 and figures 5.1, 

5.2, 5.3, 5.4, 5.5, 5.7, 5.8, 5.9, 5.10, 5.11, 5.12, 5.13. The third copyright permission is for table 

A.1 and figures A.1, A.2. The last copyright permission is for figures B.1, B.2 and B.3. 
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